Effects of tomato spotted wilt virus isolates, host plants, and temperature on survival, size, and development time of Frankliniella occidentalis

2007 ◽  
Vol 123 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Christof F. Stumpf ◽  
George G. Kennedy
2004 ◽  
Vol 94 (7) ◽  
pp. 706-711 ◽  
Author(s):  
P. C. Maris ◽  
N. N. Joosten ◽  
R. W. Goldbach ◽  
D. Peters

The effect of Tomato spotted wilt virus (TSWV) infection on plant attractiveness for the western flower thrips (Frankliniella occidentalis) was studied. Significantly more thrips were recovered on infected than were recovered on noninfected pepper (Capsicum annuum) plants in different preference tests. In addition, more offspring were produced on the virus-infected pepper plants, and this effect also was found for TSWV-infected Datura stramonium. Thrips behavior was minimally influenced by TSWV-infection of host plants with only a slight preference for feeding on infected plants. Offspring development was positively affected since larvae hatched earlier from eggs and subsequently pupated faster on TSWV-infected plants. These results show a mutualistic relationship between F. occidentalis and TSWV.


2000 ◽  
Vol 90 (5) ◽  
pp. 454-459 ◽  
Author(s):  
Tatsuya Nagata ◽  
Alice K. Inoue-Nagata ◽  
Marcel Prins ◽  
Rob Goldbach ◽  
Dick Peters

Two defective RNA-containing isolates (Pe-1 and 16-2) and an envelope-deficient (env¯) isolate of Tomato spotted wilt virus (TSWV) were tested for their transmissibility by Frankliniella occidentalis. The Pe-1 isolate contained a truncated L RNA segment that barely interfered with symptom expression and replication of the wild-type (wt) L RNA segment. This isolate was transmitted with an efficiency of 51%, a value comparable to that found for wt TSWV (54%). Isolate 16-2, which contained a genuine defective interfering L RNA as concluded from its ability to suppress wt L RNA synthesis and attenuation of symptom expression, was not transmitted at all. The midguts of all larvae that ingested Pe-1 became infected, whereas limited midgut infections were found in 24% of the larvae that ingested 16-2. This difference in infection could be explained by the presence of a low number of infectious units in the inoculum ingested from plants as demonstrated in infection experiments and verified by northern blot analysis. The env¯ isolate failed to infect the midgut after ingestion and could not be transmitted by any thrips stage. This isolate also cannot infect primary thrips cell cultures. Taken together, these results suggest that the envelope of TSWV contains the determinants required for binding and subsequent infection of thrips cells.


Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 847-852 ◽  
Author(s):  
D. G. Riley ◽  
H. R. Pappu

Two studies were conducted in Georgia during the spring of 1997 and 1998 to evaluate various management practices for reducing thrips and thrips-vectored Tomato spotted wilt virus (TSWV) in tomato. Populations of the two species of thrips responsible for transmitting TSWV in tomato fields, Frankliniella occidentalis and F. fusca, were determined using blossom and sticky trap samples. Management practices evaluated were host plant resistance, insecticide treatments, planting date, and light-reflective mulch. In both years, intensive insecticide treatment had the largest effect in reducing thrips and spotted wilt and increasing marketable yield, compared with host plant resistance and reflective mulch. The effect of planting date was consistent in that the later planting date resulted in higher incidence of TSWV, lower thrips numbers, and lower tomato yields, both in fruit quality and dollar value. Host plant resistance and reflective mulch significantly reduced thrips and TSWV. In both years, early planting on black plastic with an intensive insecticide treatment resulted in the highest yield.


2003 ◽  
Vol 38 (4) ◽  
pp. 660-668 ◽  
Author(s):  
R. M. McPherson ◽  
R. J. Beshear ◽  
W. C. Johnson ◽  
N. Martinez-Ochoa ◽  
M. L. Wells

The tobacco thrips, Frankliniella fusca (Hinds), is an economic pest of flue-cured tobacco because it vectors tomato spotted wilt tospovirus. Other species of thrips are also vectors of spotted wilt in tobacco, including the western flower thrips, F. occidentalis (Pergande). This study examined the presence of thrips species on alternate plant hosts associated with the tobacco farmscape and surrounding area. Weed hosts were sampled from December through April from 1998 through 2001 to assess which plants provide suitable refuge and nutrients for thrips survival, reproduction, and spotted wilt infection. Thrips were identified to species and confirmed as potential vectors of spotted wilt by using ELISA to test for the presence of a non-structural tomato spotted wilt virus protein. Wild radish (Raphanus raphanistrum L.), broomsedge (Andropogon virginicus L.), and narrowleaf vetch (Vicia sativa L. subsp. nigra (L.) Ehrh.) are common late-winter weeds in the farmscape that harbor spotted wilt vectors. Cutleaf evening primrose, Oenethera laciniata Hill, and volunteer soybean, Glycine max(L.) Merrill, also were hosts of spotted wilt vectors in the tobacco farmscape. Numerous other weed hosts were present in the tobacco farmscape but either had no thrips collected from them or thrips were not confirmed as potential spotted wilt vectors from these host plants. Several other plants near the tobacco farmscape also were infected with spotted wilt, and three of these host plants, common chickweed (Stellaria media (L.) Cyrillo), carrot (Daucus carota L.), and flowering dogwood (Cornus florida L.) had confirmed vectors (ELISA) collected from them. Henbit (Lamium amplexicaule L.), wild radish, cutleaf evening primrose, narrowleaf vetch, carrot, curly dock (Rumex crispus L.), red sorrel (Rumex acetosella L.), and common chickweed were confirmed as positive plant hosts in this study for spotted wilt using ELISA. Frankliniella fusca appears to be the most abundant thrips vector on these alternate plant hosts and is the predominate thrips species collected on the flue-cured tobacco, Nicotiana tabacum L. However, F. occidentalis, Haplothrips graminis Hood, and Chirothrips spp. also were confirmed in this study to be potential vectors in the tobacco farmscape. Weed hosts in the farmscape appear to be influential as refuge and nutrients for vectors and an innoculant source of tomato spotted wilt virus in the flue-cured tobacco farmscape.


Sign in / Sign up

Export Citation Format

Share Document