Transient Analysis of Dedicated Pressure Relief Valve Under High-Pressure Condition in Severe Accident for Tianwan 56 Nuclear Power Plant

2021 ◽  
Author(s):  
Youyou Xu ◽  
deng jian ◽  
Xiaoji Wang ◽  
Lingjun Wu ◽  
Ming Zhang ◽  
...  
Author(s):  
Youyou Xu ◽  
Jian Deng ◽  
Xiaoji Wang ◽  
Lingjun Wu ◽  
Ming Zhang ◽  
...  

Abstract In the management of severe accident of nuclear reactor, the pressure relief of reactor coolant system (RCS) is an important mitigation measure to prevent high pressure core melt (HPCM). In the safety system improvement of Tianwan56 nuclear power plant, the optimization measure of adding the dedicated pressure relief valve (DPRV) for severe accident were adopted. This improvement allows the reactor to release the pressure of RCS before the reactor vessel being damaged to mitigate the consequence of reactor melt accident under high-pressure condition. Based on the analysis of severe accident sequences, the total loss of feed water accident is confirmed to cover the various severe accident consequences which may lead to HPCM accident. This paper studied the transient characteristics of total loss of feed water accident sequences, and the factors such as valve opening delay on the operating temperature of the valve were researched. Finally, the representative and envelope operating condition of DPRV under severe accident was clarified. Besides, the temperature curve of fluid passing through the valve and the maximum temperature the valve experienced were obtained. This research provides the valuable and indispensable basis to the operability and integrity analysis of DPRV in severe accident.


2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Kevin Fernández-Cosials ◽  
Gonzalo Jiménez ◽  
César Serrano ◽  
Luisa Ibáñez ◽  
Ángel Peinado

During a severe accident (SA) in a nuclear power plant (NPP), there are several challenges that need to be faced. To coup with a containment overpressure, the venting action will lower the pressure but it will release radioactivity to the environment. In order to reduce the radioactivity released, a filtered containment venting system (FCVS) can be used to retain iodine and aerosols radioactive releases coming from the containment atmosphere. However, during a SA, large quantities of hydrogen can also be generated. Hydrogen reacts violently with oxygen and its combustion could impair systems, components, or structures. For this reason, to protect the integrity of the FCVS against hydrogen explosions, an inertization system is found necessary. This system should create an inert atmosphere previous to any containment venting that impedes the contact of hydrogen and oxygen. In this paper, the inertization system for Cofrentes NPP is presented. It consists of a nitrogen injection located in three different points. A computational model of the FCVS as well as the inertization system has been created. The results show that if the nitrogen sweeps and the containment venting are properly synchronized, the hydrogen risk could be reduced to a minimum and therefore, the integrity of the FCVS would be preserved.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


Sign in / Sign up

Export Citation Format

Share Document