Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery

2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.

2019 ◽  
Vol 13 (4) ◽  
Author(s):  
Yingkan Yang ◽  
Kang Kong ◽  
Jianmin Li ◽  
Shuxin Wang ◽  
Jinhua Li

Abstract Current surgical instruments with fewer degrees-of-freedom (DOF) for minimally invasive surgery (MIS) have limited capability to perform complicated and precise procedures, such as suturing and knot-tying. To address such a problem, a modular dexterous hand-held surgical robot with an ergonomic handle and 4DOF interchangeable instruments was developed. The kinematic arrangement of the instrument and that of the handle were designed to be the same. A compact roll-yaw-roll transmission was proposed applying cable-driven mechanism. Performance experiments were carried out to evaluate the effectiveness of the overall system. The measured grip forces of the robot ranged from 8.63 N to 19.18 N. The suturing performance score of the robot was significantly higher than that of the conventional instrument (28.8 ± 5.02 versus 17.2 ± 7.43, p = 0.041). The trajectory tracking test and animal experiment verified the accuracy and feasibility of the robot. The proposed robot could improve the surgical performance of MIS, providing various end-effectors and having an intuitive interface in the meantime.


Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

In robotically-assisted minimally invasive surgery (MIS), the provision of a decoupled remote center-of-motion (RCM) kinematics is a critical design challenge for surgical robots. However, although there have been numerous RCM robots developed, a fully decoupled four-degrees-of-freedom (DOF) RCM mechanism is still highly anticipated. In this paper, a 4-DOF parallel manipulator with a fully decoupled RCM is presented. First, the kinematic structure of the manipulator is described. Then, the fully decoupled motion, i.e., each of the four DOFs of the end-effector can be independently controlled by one corresponding actuated joint, is verified. Further, the inverse kinematics solutions are derived and the reachable workspace of tool tip is analyzed. As a result, the proposed manipulator is a feasible candidate for providing a fully decoupled surgical tool motion for minimally invasive surgery.


Author(s):  
Hangfei Zhou ◽  
Zhuang Fu ◽  
Jian Fei ◽  
Zhen Yang

This paper presents a novel miniature robotic arm with four degrees of freedom and one end-effector. The two joints of the robotic arm are multiple-segment, which consist of several serial plates with tiny cavities. Kinematic modeling of the robotic arm has been completed for subsequent implementation. With multiple-segment joints, the robotic arm gets smooth, linear, and flexible property. Simulations and experiments show that the robot can be used in abdominal single-port minimally invasive surgery for its unique operation capability.


2015 ◽  
Vol 1 (1) ◽  
pp. 140-144 ◽  
Author(s):  
Timo Cuntz ◽  
Laura Comella

AbstractAlthough the use of minimally invasive surgery techniques has steadily increased, the development of new tools for these procedures has stagnated. Indeed a new generation of surgical instruments, with tips that have multiple degrees of freedom, has been developed. However, they are facing so many technical problems that none have been able to establish themselves in the medical market. To overcome the problems these instruments are facing, a micro hydraulic power transmission system has been developed and been presented in [1]. With these driving units it was possible to design an instrument for minimally invasive surgery with a tip which is movable in 3 degrees of freedom (DOF) and that is light in weight, small in size and powerful in movements and gripping. This paper presents the mechanical setup (including dimensions and materials), describes the theoretical basis for the control with the inverse kinematic model, discusses the external drives setup and gives first performance data of this novel hydraulically actuated laparoscopic instrument with 3 degrees of freedom.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 92 ◽  
Author(s):  
HaoChen Wang ◽  
SaiHui Cui ◽  
Yao Wang ◽  
ChengLi Song

Minimally invasive surgery (MIS) is a surgical technique that facilitates access to the internal tissues and organs of a patient’s body via a limited number of small incisions or natural orifice of the patients. Such a technique requires specialized slender surgical instruments with a high levels of dexterity and functionality. However, the currently available MIS instruments are rigid and could offer only limited degrees of freedom (DOFs) that hampers the surgeon’s effort to perform the required operation accurately. In this study, we have developed a hybrid electromagnetic and tendon-driven actuator as an integral part of MIS surgical instruments to provide them with optimum angulation. The design uses a novel electromagnetic structure to lock the position of individual joints, and a tendon-driven structure for the articulation of the surgical instrument. The finite element method (FEM) was utilized to predict the performance of the actuator, which was experimentally validated. Subsequently, a prototype was assembled, and corresponding kinematics analysis was presented to visualize the improvement of the developed mechanism on the functional workspace of the MIS instruments. It was concluded that the developed mechanism could offer three additional DOFs for the surgical instrument and angulation of 180° for each articulated joint.


Author(s):  
William M. Aguilera ◽  
Mary I. Frecker ◽  
Randy Haluck

Abstract A model has been developed to design a new active, steerable end-effector for minimally invasive surgery. Active material is incorporated into the surgical instrument to increase the degrees of freedom available to the surgeon. This paper focuses on the modeling of the end-effector using both piezoelectric ceramic and electroactive polymer (EAP) materials. The end-effector design consists of a number of bimorph actuator sections in series with each active layer being individually controlled. Each section may behave as either a bimorph or a unimorph actuator, where in the case of unimorph one of the active layers is passive. By varying the strength and direction of the electric field across each section, a prescribed overall shape can be achieved to allow the user to steer the device. The piezoceramic device is modeled using strain energy methods to predict the quasi-static force-deflection behavior. In the EAP model, experimental data for the electrostrictive P(VDF-TrFE) copolymer is used to model the non-linear relationship between the electric field and the induced strain. Due to the large deflections achievable with the EAP, a model for large deflections beams is also used. Modeling is carried out using MATLAB and then the behavior of piezoelectric ceramic is compared to that of electro-active polymer (EAP).


Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

This paper presents the Jacobian analysis of a parallel manipulator that has a fully decoupled 4-DOF remote center-of-motion for application in minimally invasive surgery. Owing to the special structure of the manipulator, the Jacobian matrix of the manipulator is expressed as a combination of three special Jacobian matrices, namely the Jacobian of motion space, Jacobian of constraints, and Jacobian of actuations. Based on these Jacobian matrices, the singular configurations of the manipulator are then identified. It shows that the configuration singularity only exists at the central point and the boundary of the reachable workspace of the manipulator.


Author(s):  
J. E. N. Jaspers ◽  
M. Shehata ◽  
F. Wijkhuizen ◽  
J. L. Herder ◽  
C. A. Grimbergen

Performing complex tasks in Minimally Invasive Surgery (MIS) is demanding due to a disturbed hand-eye co-ordination, the use of non-ergonomic instruments with limited degrees of freedom (DOFs) and a lack of force feedback. Robotic telemanipulatory systems enhance surgical dexterity by providing up to 7 DOFs. They allow the surgeon to operate in an ergonomically favorable position with more intuitive manipulation of the instruments. Commercially available robotic systems, however, are very bulky, expensive and do not provide any force feedback. The aim of our study was to develop a simple mechanical manipulator for MIS. When manipulating the handle of the device, the surgeon’s wrist and grasping movements are directly transmitted to the deflectable instrument tip in 7 DOFs. The manipulator consists of a parallelogram mechanism with steel wires. First phantom experience indicated that the system functions properly. The MIM provides some force feedback improving safety. A set of MIMs seems to be an economical and compact alternative for robotic systems.


2012 ◽  
Vol 499 ◽  
pp. 248-252
Author(s):  
Jun Sun ◽  
Bo Xiang ◽  
Ping Zhou ◽  
Rui Wang

The single-port gasless laparoscopic surgical instrument is an international leading patented product in minimally invasive surgery. This paper first describes the composition and the usage of the shadowless retractor of the single-port gasless laparoscopy minimally invasive surgical instrument. Aim to meet the specific requirement arise in the minimally invasive surgery for the animal abdominal cavity, we first improve the existing shadowless lifting retractor. Then, this paper proposes and designs the double-light shadowless lifting retractor. The test has shown the designed double-light shadowless lifting retractor has satisfied the design requirement. The practical tests have been done and shown the viability and effectiveness of the proposed design approach.


Sign in / Sign up

Export Citation Format

Share Document