A Computer Architecture for the Automatic Design of Modular Systems With Application to Photovoltaic Reverse Osmosis

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Amy M. Bilton ◽  
Steven Dubowsky

Systems such as electronics, cars, computers, and robots are assembled from modular components for specific applications. Photovoltaic reverse osmosis (PVRO) systems, which can be custom-tailored for the water demands and solar properties of particular communities, are an important potential application of modular systems. Clearly, to be financially viable, such systems must be assembled from commercially available components and subsystems (modules). Designing a system from modular components for a specific application is not simple. Even for a relatively small inventory of modular components, the number of possible system configurations that exist is extremely large. For a small community, determining the best system configuration is an overwhelming task due to lack of expertise. This paper presents a modular design architecture that can be implemented on a laptop so nonexperts can configure systems from modular components. The method uses a hierarchy of filters, which can be provided from an expert system, to limit the large design space. Optimization methods and detailed models are then used to configure the location-specific system from the reduced design space. The method is applied here to community-scale PVRO systems and example cases demonstrate the effectiveness of the approach.

Author(s):  
Amy Bilton ◽  
Steven Dubowsky

Photovoltaic reverse osmosis (PVRO) systems can provide a viable clean water source for many remote communities. To be cost-effective, PVRO systems need to be custom-tailored for the local water demand, solar insolation, and water characteristics. Designing a custom system composed of modular components is not simple due to the large number of design choices and the variations in the sunlight and demand. This paper presents a modular design architecture, which when implemented on a low-cost PC, would enable users to configure systems from inventories of modular components. The method uses a hierarchy of filters or design rules, which can be provided in the form of an expert system, to limit the design space. The architecture then configures a system from the reduced design space using a genetic algorithm to minimize the system lifetime cost subject to system constraints. The genetic algorithm uses a detailed cost model and physics-based PVRO system model which determines the ability of the system to meet demand. Determining the ability to meet demand is challenging due to variations in water demand and solar radiation. Here, the community’s historical water demand, solar radiation history, and PVRO system physics are used in a Markov model to quantify the ability of a system to meet demand or the loss-of-water probability (LOWP). Case studies demonstrate the approach and the cost-reliability trade-off for community-scale PVRO systems. In addition, long-duration simulations are used to demonstrate the Markov model appropriately captures the uncertainty.


2021 ◽  
pp. 193229682199152
Author(s):  
Jana Winkelkötter ◽  
Thore Reitz

Background: The use of tube-free insulin pumps is increasing. To protect the environment, the use of resources and the amount of emissions into the environment should be kept as low as possible when designing these systems. In addition to basic waste avoidance, the composition of the waste produced must be considered. Methods: To compare current tube-free pumps from an ecological standpoint, a tube-free insulin pump with a modular design and two non-modular tube-free pumps were subjected to manual separation, manual sorting, characterization, and mass determination. The annual waste volume of a user was measured, and the recyclability was assessed. The global warming potential (GWP) resulting from extraction of raw materials, energetic utilization of waste, and landfill of the incineration residues was balanced. Results: For the modular tube-free pump, a total waste volume of 5.5 kg/a (recycling percentage 44.3%) was determined. The non-modular systems generated 4.9 kg/a (recycling percentage 14.6%) and 5.1 kg/a (recycling percentage 16.0%) waste. The product-specific GWP of the modular system was approximately 50% lower than that of the non-modular systems; the packaging-specific GWP was 2.5 times higher. In total, a GWP of 13.6 kg CO2-equivalent per year could be determined for the modular system and a GWP of 15.5 kg CO2-equivalent per year for the non-modular systems. Conclusions: Although the modular micropump has a higher total waste volume, a greater ecological potential can be attributed to it. This is based on the recyclability of the system due to its modularity and the possible reduction of packaging waste.


2021 ◽  
Vol 5 (2) ◽  
pp. 125-140
Author(s):  
Said M. A. Ibrahim ◽  
Ahmed G. M. Shabak

Scarcity of fresh water, forced many countries to get their water needs, or part of it, by means of saline water desalination. Reverse osmosis (RO) systems are useful tools in this concern. In case the grid electricity is not available or costly, photovoltaic (PV) power is necessary to derive RO systems. The present paper is concerned with providing a methodology for complete sizing and design of a photovoltaic reverse osmosis (PVRO) system in Egypt. Egypt has very favorable solar energy. A computer program was constructed to solve the mathematical equations of the model to get the numerical values. The program is capable of calculating the solar irradiation for any city in Egypt. Calculations and selection of the RO system with all connected pumps, the peak PV power needed, and the actual PV area were performed for different water demands ranging from 1-100 m3/day, and various water total dissolved solids (TDSs) of 5000, 15000, and 30000 mg/l. The cost of the complete PVRO system was also determined. The concern of the paper is related to water desalination and solar energy, which are responsible for our existence. The work also aims toward sustainable and clean environment via utilizing solar energy.


Author(s):  
Alessandro Narduzzo ◽  
Alessandro Rossi

Software design and development in Free/Open Source projects are analyzed through the lens of the theory of modularity applied to complex systems. We show that both the architecture of the artifacts (software) and the organization of the projects benefited from the paradigm of modularity in an original and effective manner. In particular, our analysis on empirical evidence suggests that three main shortcuts to modular design have been introduced and effectively applied. First, some successful projects inherited previously existing modular architecture, rather than designing new modular systems from scratch. Second, popular modular systems, like GNU/Linux kernel, evolved from an initial integrated structure through a process of evolutionary adaptation. Third, the development of modular software took advantage of the violation of one fundamental rule of modularity, that is, information hiding. Through these three routines, the projects can exploit the benefits of modularity, such as concurrent engineering, division of labor, decentralized and parallel development; at the same time, these routines lessen some of the problems posed by the design of modular architectures, namely imperfect decompositions of interdependent components. Implications and extensions of Free/Open Source projects experience are discussed in the conclusions.


2022 ◽  
Vol 308 ◽  
pp. 118339
Author(s):  
Anna H. Schleifer ◽  
Caitlin A. Murphy ◽  
Wesley J. Cole ◽  
Paul Denholm

1995 ◽  
Vol 117 (3) ◽  
pp. 409-418 ◽  
Author(s):  
M. M. Ogot ◽  
S. S. Alag

The wide application of stochastic optimization methods in mechanical design has been partially hindered due to (a) the relatively long computation time required, and (b) discretization of the design space at the onset of the optimization process. This work proposes a new stochastic algorithm, the Mixed Annealing/Heuristic Algorithm (MAH), which addresses both these issues. It is based on the Simulated Annealing algorithm (SA) and the Heuristic Optimization Technique (HOT). Both these algorithms have been successfully applied to problems in mechanical design and up to now have been considered as competing algorithms. MAH capitalizes on each of their individual strengths and addresses their weaknesses, thereby considerably reducing the computational effort required to attain the final solution. A pseudo-continuous approach for configuration generation is employed, making the discretization of the design space no longer necessary. The effectiveness of MAH is demonstrated via three problems in kinematic synthesis. Comparison of the results with other stochastic optimization methods illustrates the potential of this technique.


2016 ◽  
Vol 31 (4) ◽  
pp. 367-390
Author(s):  
Dominic Pacher ◽  
Robert Binna ◽  
Günther Specht

AbstractThis paper presents a novel concept of a Spatially Aware Graph Store, which realizes a Graph Store on top of a spatial computer architecture to manage graphs in one, two or three physical dimensions. In this environment, the physical distance between graph nodes strongly affects graph traversal performance. Consequently, a Spatially Aware Graph Store needs to minimize these distances to operate efficiently. We show that this minimization can be achieved in two ways. First, by increasing the dimensionality of the spatial computer and second by applying optimization methods. For the latter, this work introduces a novel Mid Point Optimization method to quickly optimize large real-world knowledge networks by rearranging nodes in a way that distances between linked nodes are reduced. In addition, a Local Optimization method is subsequently applied to refine the result. Finally, the Node Decomposition method is presented that splits nodes with many edges into several smaller nodes to achieve a further reduction of distances between linked nodes.Our results show that the overall distances between nodes can be reduced by three orders of magnitude for 3D in comparison to one-dimensional (1D) Spatially Aware Graph Stores. The suggested Mid Point Optimization method achieves a reduction by another order of magnitude. In a 3D spatial computer, Local Optimization is capable of reducing distances by another 20%. However, in 1D and 2D spatial computers it becomes a prohibitive time consuming method. Finally, the Node Decomposition enables an additional distance reduction by 40% in Scale Free Graph Data sets.


Sign in / Sign up

Export Citation Format

Share Document