Collaboration of Technical Editing Students With Mechanical Engineering Seniors in a Capstone Design Course

Author(s):  
Clinton Lanier ◽  
William S. Janna ◽  
John I. Hochstein

An innovative capstone design course titled “Design of Fluid Thermal Systems,” involves groups of seniors working on various semester-long design projects. Groups are composed of 3 or 4 members that bid competitively on various projects. Once projects are awarded, freshmen enrolled in the “Introduction to Mechanical Engineering” course are assigned to work with the senior design teams. The senior teams (Engineering Consulting Companies) function like small consulting companies that employ co-operative education students; e.g., the freshmen. In Fall 2006, the Engineering Consulting Companies also worked with students enrolled in a Technical Editing (TE) course—“Writing and Editing in the Professions”—within the English Department. The TE students would be given reports or instructional manuals that the Mechanical Engineering (ME) students had to write as part of their capstone project, and the resulting editing of their documents would be done by these TE students. Subsequently, the ME students were given a survey and asked to comment on this experience. In addition, the TE students were also surveyed and asked to comment as well. It was concluded that the collaboration should continue for at least one more cycle, and that the TE students were more favorably inclined toward this collaboration than were the engineering students.

Author(s):  
Daria Kotys-Schwartz ◽  
Daniel Knight ◽  
Gary Pawlas

Innovative curriculum reforms have been instituted at several universities and colleges with the intention of developing the technical competence and professional skills of engineering students. First Year Engineering Project (FYEP), or Freshman Design courses have been integrated into undergraduate engineering curricula across the country. Many of these courses provide students with hands-on engineering opportunities early in the curriculum. Senior Capstone Design (SCD) courses are ubiquitous in engineering programs, incorporating technical knowledge and real-world problem solving. Previous research has shown that project-driven classes like FYEP and SCD increase the professional and technical design skills of students. While research into first year and senior design skills development has been more robust, scant research investigating the transformation of skills between freshman design experiences and senior design experiences has been performed. This research project investigates the longitudinal technical and professional skill development of mechanical engineering students at the University of Colorado at Boulder. An overview of First-Year Engineering Projects and the mechanical engineering Senior Capstone Design project course is detailed. Technical and professional skill objectives are discussed within the paper. Pre and post skill surveys were utilized in both First-Year Engineering Projects and the Senior Capstone Design classes. Initial results indicate that student skills deteriorate between the end of the first-year and beginning of the senior year.


Author(s):  
Douglas V. Gallagher ◽  
Ronald A. L. Rorrer

At the University Colorado Denver, a manufacturing process design course was specifically created to raise the level of the as constructed senior design projects in the department. The manufacturing process design course creates a feed forward loop into the senior design course, while the senior design course generates a feedback loop into the process design course. Every student and student project has the opportunity to utilize CNC mills and lathes where appropriate. Specific emphasis is placed upon the interfaces from solid models to CAM models and subsequently the interface from CAM models to the machine tool. Often the construction of many senior design projects approaches the level of blacksmithing due to time constraints and lack of fabrication background. Obviously, most engineering students have neither the time nor the ability to become expert fabricators. However, the wide incorporation of CNC machining in the program allows, an opportunity to not only raise the quality of their prototypes, but also to immerse in the hands on experience of living with the ramifications of their own design decisions in manufacturing. Additionally, some of the art of fabrication is turned into the science of fabrication. The focus of this paper will be primarily on examining the effect of formal incorporation of the manufacturing process in the capstone design course.


Author(s):  
D. D. Mann ◽  
D. S. Petkau ◽  
K. J. Dick ◽  
S. Ingram

Design teams in industry are composed of individuals with diverse backgrounds at various stages of their careers. A unique set of group dynamics will be created with one member, likely someone with sufficient experience, assuming the responsibility of being the team leader. Design teams formed in engineering classes within the university setting typically consist of individuals at the same stage of their academic training, thus students do not experience the same group dynamics as they will find in industry. In an attempt to give undergraduate engineering students this experience, inter-year design teams were formed from engineering students registered in courses representing different stages of completion of the engineering degree. Students registered in the final-year design course were expected to assume the roles of team leaders or coleaders. This paper will discuss a number of issues that were observed with inter-year capstone design teams. It has been concluded that the disadvantages of inter-year design teams outweigh the advantages.


Author(s):  
Kevin R. Anderson

Abstract This paper describes the use of ANSYS ICEPAK software in teaching a senior level capstone thermal systems design course in a Mechanical Engineering curriculum. The use of ANSYS ICEPAK software tools in the thermal design course allows our undergraduates the preparation they need to become competitive and productive in today’s private industry sector. The paradigm of learn-by-doing adopted by the college is used in the thermal design course by exposing students to the use of ANSYS ICEPAK software in order to complete a design project in the thermal design course. The senior level capstone thermal design course is a three-unit semester course. Students are broken into teams and are tasked to solve a variety of thermal-fluid, heat transfer related design problem scenarios. The student teams are tasked to design an electronic systems thermal management system using PCBS, fans, heat sinks, heat pipes, etc. in order to meet a set of pre-defined requirements. In this manner, the use of the ICEPAK projects serves to build the soft skills (report writing and technical presentation) of the students. This paper will include examples of ANSYS ICEPAK based thermal design projects and methods of assessment and illustrations of how the thermal design course addresses the Mechanical Engineering program’s ABET objectives and outcomes related to senior design capstone design courses.


Author(s):  
M. Salim Azzouz ◽  
Jan Brink

Teaching senior design courses and labs has not been an easy task for the two authors. It has been rather a daunting working task associated with great learning experiences. It was decided early on from the initiation of the mechanical engineering program at the McCoy School of Engineering at Midwestern State University that the senior design project within the senior design class is a testing and enriching experience for senior mechanical engineering students as well as the teaching faculty. The senior design course and labs are conducted as a research experience for undergraduate students and their assigned faculty. The proposed senior project spans over two semesters, fall and spring, where the students experience a full mechanical engineering related project from the inception phase, through the design and construction phases, and finishing with the testing and analysis phases. The inception phase stands essentially for the brainstorming phase where the students are required to come-up with a set of diverse solutions to their assigned project problem. The design and construction phases stand for choosing an optimal particular solution for their problem according to a set of defined criteria. Then, the students start the preliminary design phase with related cost estimation, and then finalize the design with a set of final drawings. After the design phase, the students start building a machine, an apparatus, a prototype or putting together the elements of a process. In this period they work intensely, with their faculty, the purchasing department, and mostly the department machinist, or the surrounding town machine shops. The testing and analysis phase stands for designing an experimental set-up, writing a testing procedure, and obtaining real time recorded data and proceeding with its analysis. In this technical paper, the authors talk about the requirements for a senior project known as the deliverables, the teaching tools used throughout the class work and labs, the students’ partial and final PowerPoints presentations and weekly and final reports. The authors describe the students overall achievements, and the archiving of the projects. Additionally, the authors talk about the twists and turns encountered during a senior project, with students, other faculty, the machinist, the lab technician, the secretary, and suppliers, and other difficulties experienced in running a full project with real final products. Finally, the authors talk about the aftermath of a senior project, eventual publications related to the project, and what is the view point of the American Board of Engineering and Technology (ABET) on these senior projects.


Author(s):  
David G. Alciatore

Abstract This paper describes three-dimensional computer graphics simulation (CGS) and how it can be applied as a useful tool in a capstone design course in Mechanical Engineering. The necessary hardware and software to perform CGS is also outlined. Three examples of senior design projects at Colorado State University which utilized 3-D CGS to help revise and verify their designs are also presented.


2021 ◽  
Author(s):  
Valerie Bracho Perez ◽  
Anilegna Nuñez Abreu ◽  
Ameen Khan ◽  
Luis Guardia ◽  
Indhira Hasbún ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document