Definite Advantages of Utilizing Integrated Multiple Indirect Inspection (IDi) Technologies to Survey a Newly Laid 3LPE Coated Cross Country Pipeline: A Case Study

2021 ◽  
Author(s):  
Mahesh Prasad ◽  
Sajeev Chanakath ◽  
Abhishek Kumar

Abstract Every scientific or engineering assessment made in today’s life is with respect to a specific approach — prescriptive or performance-based. In India for a newly laid pipeline (approx. 443 Km) — there are various prescriptive regulations ascertained by OISD and PNGRB for the pipelines’ safe routine operations. In a prescriptive system, it becomes mandatory for a pipeline owner to have the most accurate coatings and Cathodic Protection (CP) data irrespective of the external soil environmental conditions. This will also require the other external aggravators such as AC interference, Railway Crossings, Temporal phenomena etc. to be taken into consideration while the survey data is being collected. Only then sufficient data is available for the Owner to make correct integrity-based decisions and step forward towards a performance-based integrity management program. Hindustan Petroleum Corporation Limited (HPCL)-Rewari Kanpur Pipeline (RKPL) started the external line inspection (XLI) program as a prescriptive procedure for ascertaining the health of the in-place CP system and assess the integrity of the coating.This pipeline with length of approx. 443 Kms stretching across three (3) states of Haryana, Rajasthan, and Uttar Pradesh traverses through a truly varying surrounding soil and ambient environmental conditions. As per NACE Standard Practice SP0502, it is known that different aboveground survey tools are to be utilized by the pipeline owner for varying soil conditions. To overcome the complexity of dealing with varying environments, weather conditions (resulting in varying soil resistivity) for specific pipeline lengths to be surveyed by the various different technologies that may be applicable, HPCL-RKPL opted to deploy an integrated indirect inspection system which allows to perform the following aboveground surveys simultaneously, at the same time: DCVG, ACVG, ACCA (CAT), CIPS – AC & DC with all recorded raw logs for authenticity. Using these raw logs, HPCL-RKPL were able to ascertain few intricate concerns with the in-place CP system which would have otherwise been veiled. This was possible due to the extremely high frequency of data capture on several times per second basis. The integrated CP and Coating Integrity data also aligned and correlated very well with the historically conducted in-line inspection information. This paper shall discuss the unique findings obtained during the survey.

Author(s):  
Fraser King ◽  
Katherine Ikeda-Cameron ◽  
Greg Van Boven ◽  
Tom Jack ◽  
Robert Sutherby ◽  
...  

TransCanada Pipelines have been involved with monitoring environmental conditions at pipe depth for almost 10 years. The purpose of this monitoring is to understand the mechanism of SCC as it occurs in the field and to assist in the development of site-selection models for identifying locations where SCC might be occurring. Monitoring can either be done at many locations along the right-of-way at a given time or continuously at discrete locations in order to observe seasonal variations. A range of environmental parameters can be monitored. Early work focussed on parameters relevant to corrosion, such as soil resistivity, redox potential, temperature, pH, and on- and off-potentials. More recently, parameters relevant to SCC have also been monitored, such as soil CO2 and permeable hydrogen concentrations. In addition, the extent to which these parameters change seasonally has been monitored to determine if the environment is conducive to SCC continuously or whether cracking might only occur at certain times of the year. In terms of implementation, the results of in situ monitoring can be used as part of a larger integrity management program to decide where and when to mitigate SCC. Correlations between soil parameters measured using the portable probe and known SCC sites can be used to identify other susceptible locations or to prioritize different lines for inspection. Seasonal variations at a particular location can be used to derive effective crack growth rates from accelerated laboratory testing in order to determine re-inspection intervals. Examples are provided of both portable and permanent NOVAProbe measurements for low-pH and high-pH SCC.


Author(s):  
Brittany Goldsmith ◽  
Elizabeth Foyt ◽  
Madhu Hariharan

As offshore field developments move into deeper water, one of the greatest challenges is in designing riser systems capable of overcoming the added risks of more severe environments, complicated well requirements and uncertainty of operating conditions. The failure of a primary riser component could lead to unacceptable consequences, including environmental damage, lost production and possible injury or loss of human life. Identification of the risks facing riser systems and management of these risks are essential to ensure that riser systems operate without failure. Operators have recognized the importance of installing instrumentation such as global positioning systems (GPS), vessel motion measurement packages, wind and wave sensors and Acoustic Doppler Current Profiler (ADCP) units to monitor vessel motions and environmental conditions. Additionally, high precision monitoring equipment has been developed for capturing riser response. Measured data from these instruments allow an operator to determine when the limits of acceptable response, predicted by analysis or determined by physical limitations of the riser components, have been exceeded. Regular processing of measured data through automated routines ensures that integrity can be quickly assessed. This is particularly important following extreme events, such as a hurricane or loop current. High and medium alert levels are set for each parameter, based on design analysis and operating data. Measured data is compared with these alert levels, and when an alert level is reached, further response evaluation or inspection of the components in question is recommended. This paper will describe the role of offshore monitoring in an integrity management program and discuss the development of alert levels based on potential failure modes of the riser systems. The paper will further demonstrate how this process is key for an effective integrity management program for deepwater riser systems.


Author(s):  
Yong-Yi Wang ◽  
Don West ◽  
Douglas Dewar ◽  
Alex McKenzie-Johnson ◽  
Millan Sen

Ground movements, such as landslides and subsidence/settlement, can pose serious threats to pipeline integrity. The consequence of these incidents can be severe. In the absence of systematic integrity management, preventing and predicting incidents related to ground movements can be difficult. A ground movement management program can reduce the potential of those incidents. Some basic concepts and terms relevant to the management of ground movement hazards are introduced first. A ground movement management program may involve a long segment of a pipeline that may have a threat of failure in unknown locations. Identifying such locations and understanding the potential magnitude of the ground movement is often the starting point of a management program. In other cases, management activities may start after an event is known to have occurred. A sample response process is shown to illustrate key considerations and decision points after the evidence of an event is discovered. Such a process can involve fitness-for-service (FFS) assessment when appropriate information is available. The framework and key elements of FFS assessment are explained, including safety factors on strain capacity. The use of FFS assessment is illustrated through the assessment of tensile failure mode. Assessment models are introduced, including key factors affecting the outcome of an assessment. The unique features of girth welds in vintage pipelines are highlighted because the management of such pipelines is a high priority in North America and perhaps in other parts of the worlds. Common practice and appropriate considerations in a pipeline replacement program in areas of potential ground movement are highlighted. It is advisable to replace pipes with pipes of similar strength and stiffness so the strains can be distributed as broadly as possible. The chemical composition of pipe steels and the mechanical properties of the pipes should be such that the possibility of HAZ softening and weld strength undermatching is minimized. In addition, the benefits and cost of using the workmanship flaw acceptance criteria of API 1104 or equivalent standards in making repair and cutout decisions of vintage pipelines should be evaluated against the possible use of FFS assessment procedures. FFS assessment provides a quantifiable performance target which is not available through the workmanship criteria. However, necessary inputs to perform FFS assessment may not be readily available. Ongoing work intended to address some of the gaps is briefly described.


2010 ◽  
Vol 26 (02) ◽  
pp. 106-110
Author(s):  
Ge Wang ◽  
Michael Lee ◽  
Chris Serratella ◽  
Stanley Botten ◽  
Sam Ternowchek ◽  
...  

Real-time monitoring and detection of structural degradation helps in capturing the structural conditions of ships. The latest nondestructive testing (NDT) and sensor technologies will potentially be integrated into future generations of the structural integrity management program. This paper reports on a joint development project between Alaska Tanker Company, American Bureau of Shipping (ABS), and MISTRAS. The pilot project examined the viability of acoustic emission technology as a screening tool for surveys and inspection planning. Specifically, testing took place on a 32-year-old double-hull Trans Alaska Pipeline System (TAPS) trade tanker. The test demonstrated the possibility of adapting this technology in the identification of critical spots on a tanker in order to target inspections. This targeting will focus surveys and inspections on suspected areas, thus increasing efficiency of detecting structural degradation. The test has the potential to introduce new inspection procedures as the project undertakes the first commercial testing of the latest acoustic emission technology during a tanker's voyage.


Author(s):  
Alex J. Baumgard ◽  
Tara L. Coultish ◽  
Gerry W. Ferris

Over the last 15 years, BGC Engineering Inc. has developed and implemented a geohazards Integrity Management Program (IMP) with 12 major pipeline operators (consisting of gas and oil pipelines and of both gathering and transmission systems). Over this time, the program has been applied to the assessment of approximately 13,500 individual hydrotechnical and geotechnical geohazard sites spanning approximately 63,000 km of operating pipelines in Canada and the USA. Hydrotechnical (watercourse) and geotechnical (slope) hazards are the primary types of geohazards that have directly contributed to pipeline failures in Canada. As with all IMPs, the core objectives of a geohazard management system are to ensure a proactive approach that is repeatable and defensible. In order to meet these objectives, the program allows for varying levels of intensity of inspection and a recommended timescale for completion of actions to manage the identified geohazards in accordance with the degree of hazard that the site poses to the pipeline. In this way, the sites are managed in a proactive manner while remaining flexible to accommodate the most current conditions at each site. This paper will provide a background to the key components of the program related specifically to existing operating pipeline systems, present pertinent statistics on the occurrence of various types of geohazards based on the large dataset of inspections, and discuss some of the lessons learned in the form of program results and program challenges from implementing a geohazard integrity management system for a dozen operators with different ages of systems, complexity of pipeline networks, and in varied geographic settings.


Author(s):  
Sathya Geetha Ganesan ◽  
Diego Martínez García ◽  
Juneseok Lee ◽  
Jonathan Keck ◽  
Paul Yang

2021 ◽  
Author(s):  
Dragos Vas ◽  
Steven Peckham ◽  
Carl Schmitt ◽  
Martin Stuefer ◽  
Ross Burgener ◽  
...  

Ice fog events, which occur during the Arctic winter, result in greatly decreased visibility and can lead to an increase of ice on roadways, aircraft, and airfields. The Fairbanks area is known for ice fog conditions, and previous studies have shown these events to be associated with moisture released from local power generation. Despite the identified originating mechanism of ice fog, there remains a need to quantify the environmental conditions controlling its origination, intensity, and spatial extent. This investigation focused on developing innovative methods of identifying and characterizing the environmental conditions that lead to ice fog formation near Fort Wainwright, Alaska. Preliminary data collected from December 2019 to March 2020 suggest that ice fog events occurred with temperatures below −34°C, up to 74% of the time ice fog emanated from the power generation facility, and at least 95% of ice particles during ice fog events were solid droxtals with diameters ranging from 7 to 50 μm. This report documents the need for frequent and detailed observations of the meteorological conditions in combination with photographic and ice particle observations. Datasets from these observations capture the environmental complexity and the impacts from energy generation in extremely cold weather conditions.


2003 ◽  
Vol 83 (1) ◽  
pp. 129-139 ◽  
Author(s):  
A. M. Johnston ◽  
G. P. Lafond ◽  
W. E. May ◽  
G. L. Hnatowich ◽  
G. E. Hultgreen

An understanding of the effects of different opener designs and on-row packing force would help producers in their selection of appropriate direct seeding implement options for their soil conditions. A field trial was conducted at three locations (Indian Head, Sylvania and Watrous) in Saskatchewan from 1997 to 1999 to evaluate the effect of opener-packer design (spoon-steel V packer; spoon-flat rubber packer; paired row-steel V packer; paired row-flat rubber packer; sweep-pneumatic tire) in combination with a range of on-row packing forces [0, 333, 549, 746, and 1000 Newton (N) per press wheel] on crop emergence and grain yield with direct seeding. The differences observed between opener-packer combinations in this study varied by less than 10% for grain yield, and were almost always associated with the opener design and not the packer type. Despite the variable results, there was a tendency for higher pea and wheat emergence with the sweep + tire compared with other opener types at those locations that tended to be drier in the spring. Also, grain yield tended to be greater for the sweep + tire in 1999 at Indian Head, when the heavy-textured soil at this site had high soil moisture conditions at seeding. The responses to packing force varied with different years and among the crops. Generally, 333 N per press wheel provided adequate emergence and grain yield across the environmental conditions encountered in this study, regardless of the opener-packer combination. In 1997, 5% more pea seedlings emerged with some amount of packing compared with no packing. Relative to the check, some packing resulted in wheat grain yield that was 13% greater at three of the location-by-year combinations, and wheat emergence that was 9% greater in 1998. However, with canola excessive packing force (i.e., the two highest vs. lower packing forces) resulted in 11 fewer seedlings m-2 in 1999. A packing pressure of 333 N per press wheel provided adequate emergence and grain yield across varied environmental conditions, with higher packing force only negatively influencing emergence in canola, and not yield. Key words: Furrow opener, packing force, emergence, direct seeding, zero till


2018 ◽  
pp. 194-199 ◽  
Author(s):  
Iwona Jaskulska ◽  
Lech Gałęzewski ◽  
Mariusz Piekarczyk ◽  
Dariusz Jaskulski

The emergence of plants is especially important for the winter crops that are grown in the challenging environmental conditions of many countries in Central and Eastern Europe. The emergence and initial growth of winter rapeseed were compared in field trials in a randomized block design with three replicates for plants sown in conventional tillage systems (CT) and strip-till (ST), which had different weather conditions and on soil with a non-uniform texture over a period of two years. Sowing in the CT was carried out using Horsch Pronto 4DC (Germany) at a row distance of 0.29 m. The ST operations were performed using a Pro-Til 4T drill manufactured by Mzuri Limited (Great Britain) - row spacing of 0.36 m. In favourable rainfall and thermal conditions, the density of winter rapeseed plants two weeks after sowing was found to be higher if it was sown after the CT than in the ST system. In the year that had a serious shortage of rainfall during the sowing period, a considerably higher density of plants was achieved using the ST system. The uniformity of plant growth using the ST technology in soil with a varied texture, especially in a year with an unfavourable distribution of rainfall, was proven by less variability in the number of leaves in the rosette, in the dry mass of the leaf rosette and in the root neck thickness of the winter rapeseed than in the CT system. The ST system can create good conditions for the initial development and preparation of rapeseed plants for wintering.


2021 ◽  
Author(s):  
Fabian Wankmüller ◽  
Mohsen Zarebanadkouki ◽  
Andrea Carminati

<p>Predicting plant responses to drought is a long-standing research goal. Since stomata regulate gas-exchange between plants and the atmosphere, understanding their response to drought is fundamental. Current predictions of stomatal behavior during drought mainly rely on empirical models. These models may suit well to a specific set of plant traits and environmental growth conditions, but their predictive value is doubtful when atmospheric and soil conditions change. Stomatal optimization offers an alternative framework to predict stomatal regulation in response to drought for varying environmental conditions and plant traits. Models which apply this optimization principle posit that stomata maximize the carbon gain in relation to a penalty caused by water loss, such as xylem cavitation. Optimization models have the advantage of requiring a limited number of parameters and have been successfully used to predict stomatal response to drought for varying environmental conditions and species. However, a mechanism that enables stomata to optimally close in response to water limitations, and more precisely to a drop in the ability of the soil-plant continuum to sustain the transpiration demand, is not known. Here, we propose a model of stomatal regulation that is linked to abscisic acid (ABA) dynamics (production, degradation and transport) and that allows plants to avoid excessive drops in leaf water potential during soil drying and increasing vapor pressure deficit (VPD). The model assumes that: 1) stomatal conductance (g<sub>s</sub>) decreases when ABA concentration close to the guard cells (C<sub>ABA</sub>) increases; 2) C<sub>ABA</sub> increases with decreasing leaf water potential (due to higher production); and 3) C<sub>ABA</sub> decreases with increasing photosynthesis (e.g. due to faster degradation or transport to the phloem). Our model includes simulations of leaf water potential based on transpiration rate, soil water potential and variable hydraulic conductances of key elements (rhizosphere, root and xylem), and a function linking stomatal conductance to assimilation. It was tested for different soil properties and VPD. The model predicts that stomata close when the relation between assimilation and leaf water potential becomes nonlinear. In wet soil conditions and low VPD, when there is no water limitation, this nonlinearity is controlled by the relation between stomatal conductance and assimilation. In dry soil conditions, when the soil hydraulic conductivity limits the water supply, nonlinearity is controlled by the excessive drop of leaf water potential for increasing transpiration rates. The model predicts different relations between stomatal conductance and leaf water potential for varying soil properties and VPD. For instance, the closure of stomata is more abrupt in sandy soil, reflecting the steep decrease in hydraulic conductivity of sandy soils. In summary, our model results in an optimal behavior, in which stomatal closure avoids excessive (nonlinear) decrease in leaf water potential, similar to other stomatal optimization models. As based on ABA concentration which increases with decreasing leaf water potential but declines with assimilation, this model is a preliminary attempt to link optimization models to a physiological mechanism.</p>


Sign in / Sign up

Export Citation Format

Share Document