Method for Obtaining Light Curing Printing Condition Based on New Theoretical Description

Author(s):  
Yang Li ◽  
Jun Yin

Abstract Digital light processing (DLP) is widely used in tissue engineering in recent years. High resolution and high speed are the advantages of this printing method. The method of determining DLP process printing conditions by forming experiments is restricted by the formability of the material and it is difficult to apply to soft materials and materials that are not easily formed. In this study, through theoretical analysis that the concept of absorbances and gel point is introduced into the relationship between exposure time and forming thickness. This allows the forming conditions to be obtained by measurement of only physical quantities related to the nature of the material itself rather than through forming experiments. Which facilitates high-precision DLP printing of biomaterials.

2018 ◽  
Author(s):  
J. Lindsay ◽  
P. Trimby ◽  
J. Goulden ◽  
S. McCracken ◽  
R. Andrews

Abstract The results presented here show how high-speed simultaneous EBSD and EDS can be used to characterize the essential microstructural parameters in SnPb solder joints with high resolution and precision. Analyses of both intact and failed solder joints have been carried out. Regions of strain localization that are not apparent from the Sn and Pb phase distribution are identified in the intact bond, providing key insights into the mechanism of potential bond failure. In addition, EBSD provides a wealth of quantitative detail such as the relationship between parent Sn grain orientations and Pb coarsening, the morphology and distribution of IMCs on a sub-micron scale and accurate grain size information for all phases within the joint. Such analyses enable a better understanding of the microstructural developments leading up to failure, opening up the possibility of improved accelerated thermal cycling (ATC) testing and better quality control.


2020 ◽  
Vol 15 (7) ◽  
pp. 602-606
Author(s):  
Kun Ji ◽  
Ling Ding ◽  
Xi Chen ◽  
Yun Dai ◽  
Fangfang Sun ◽  
...  

Mesenchymal Stem Cells (MSCs) exhibit enormous therapeutic potential because of their indispensable regenerative, reparative, angiogenic, anti-apoptotic, and immunosuppressive properties. MSCs can best differentiate into mesodermal cell lineages, including osteoblasts, adipocytes, muscle cells, endothelial cells and chondrocytes. Specific differentiation of MSCs could be induced through limited conditions. In addition to the relevant differentiation factors, drastic changes also occur in the microenvironment to conduct it in an optimal manner for particular differentiation. Recent evidence suggests that the mitochondria participate in the regulating of direction and process of MSCs differentiation. Therefore, our current review focuses on how mitochondria participate in both osteogenesis and adipogenesis of MSC differentiation. Besides that, in our current review, we try to provide a further understanding of the relationship between the behavior of mitochondria and the direction of MSC differentiation, which could optimize current cellular culturing protocols for further facilitating tissue engineering by adjusting specific conditions of stem cells.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3464
Author(s):  
Xuan Zou ◽  
Jingyuan Zhou ◽  
Xianwen Ran ◽  
Yiting Wu ◽  
Ping Liu ◽  
...  

Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding–sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively. The ignition height of the reactive material was obtained by fitting the relationship between the flame duration and the drop height. It was found that the ignition height of PTFE/Al/Si/CuO containing 20% PTFE/Si is 48.27 cm, which is the lowest compared to the ignition height of other Si/PTFE ratios of PTFE/Al/Si/CuO; the flame temperature was calculated from the flame spectrum. It was found that flame temperature changes little for the same reactive material at different drop heights. Compared with the flame temperature of PTFE/Al/Si/CuO with four mass ratios, it was found that the flame temperature of PTFE/Al/Si/CuO with 20% PTFE/Si is the highest, which is 2589 K. The results show that PTFE/Al/Si/CuO containing 20% PTFE/Si is easier to be ignited and has a stronger temperature destruction effect.


Author(s):  
Mehdi Kazemi ◽  
Abdolreza Rahimi

Generally, interactions at surface asperities are the cause of wear. Two-Thirds of wear in industry occurs because of the abrasive or adhesive mechanisms. This research presents an analytical model for abrasion of additive manufactured Digital Light Processing products using pin-on-disk method. Particularly, the relationship between abrasion volume, normal load, and surface asperities’ angle is investigated. To verify the proposed mathematical model, the results of this model are verified with the practical experiments. Results show that the most influential parameters on abrasion rate are normal load and surface’s normal angle. Abrasion value increases linearly with increasing normal load. The maximum abrasion value occurs when the surface’s normal angle during fabrication is 45°. After the asperities are worn the abrasion volume is the same for all specimens with different surface’s normal angle. Though layer thickness does not directly affect the wear rate, but surface roughness tests show that layer thickness has a great impact on the quality of the abraded surface. When the thickness of the layers is high, the abraded surface has deeper valleys, and thus has a more negative skewness. This paper presents an original approach in abrasion behavior improvement of DLP parts which no research has been done on it so far; thus, bringing the AM one step closer to maturity.


2019 ◽  
Vol 43 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Shunxin Cao ◽  
Ruijun Zhang ◽  
Shuohua Zhang ◽  
Shuai Qiao ◽  
Dongsheng Cong ◽  
...  

Interaction and wear between wheel and rail become increasingly serious with the increase in elevator speed and load. Uneven roller surface, eccentricity of rollers, and the looseness of rail brackets result in serious vibration problems of high-speed and super-high-speed elevators. Therefore, the forced vibration differential equation representing elevator guide rails is established based on Bernoulli–Euler theory, and the vibration equation of the elevator guide shoes and the car is constructed using the Darren Bell principle. Then, the coupled vibration model of guide rail, guide shoes, and car can be obtained using the relationship of force and relative displacement among these components. The roller–rail parameters are introduced into the established coupled vibration model using the model equivalent method. Then, the influence of roller–rail parameters on the horizontal vibration of super-high-speed elevator cars is investigated. Roller eccentricity and the vibration acceleration of the car present a linear correlation, with the amplitude of the car vibration acceleration increasing with the eccentricity of the roller. A nonlinear relationship exists between the surface roughness of the roller and the vibration acceleration of the car. Increased continuous loosening of the guide rail results in severe vibration of the car at the loose position of the support.


1994 ◽  
Vol 347 ◽  
Author(s):  
J.Ch. Bolomey ◽  
G. Cottard ◽  
P. Berthaud ◽  
A. Lemaitre ◽  
J. F. Portala

ABSTRACTMicrowave multiport sensors have been shown to provide some unique capabilities to achieve real-time testing of products conveyed at high speed. In many applications, quantitative measurements of physical quantities such as moisture content, density, etc… are required, either to guarantee reliable production or to optimally control a fabrication/transformation process. In this paper, different ways of extracting such physical quantities from microwave measurements performed by multiport sensors are presented. Model approaches are used, based on polynomial expansions of the physical quantities to be measured as a function of the microwave amplitude and phase data. Calibration procedures have been investigated for both paper and wood material samples. Comparisons between in-situ, microwave and conventional, measurements are analysed.


1989 ◽  
Vol 152 ◽  
Author(s):  
Stephan P. Velsko ◽  
David Eimerl

Recent efforts to “engineer” new nonlinear optical materials with specific desired characteristics has engendered a need for a theoretical description of optical properties which is readily accessible to chemists, yet correctly treats the essential physics of dielectric response. This paper describes a simple empirical molecular orbital model which gives useful insights into the relationship between chemical composition, crystalline structure, and optical susceptibilities. We compare the probabilities of finding new harmonic generators in various chemical classes. Rigorous bounds on the magnitudes of linear and nonlinear optical coefficients and their anisotropies are also discussed.


Author(s):  
Chunxia Zhu ◽  
Jay Katupitiya ◽  
Jing Wang

Purpose Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The purpose of this work is to analyze the effect of link deformation on the motion precision of parallel manipulators. Design/methodology/approach The flexible dynamics model of the links is first established by applying the Euler–Bernoulli beam theory and the assumed modal method. The rigid-flexible coupling equations of the parallel mechanism are further derived by using the Lagrange multiplier approach. The elastic energy resulting from spiral motion and link deformations are computed and analyzed. Motion errors of the 3-link torque-prismatic-torque parallel manipulator are then evaluated based on its inverse kinematics. The validation experiments are also conducted to verify the numerical results. Findings The lateral deformation and axial deformation are largest at the middle of the driven links. The axial deformation at the middle of the driven link is approximately one-tenth of the transversal deformation. However, the elastic potential energy of the transversal deformation is much smaller than the elastic force generated from axial deformation. Practical implications Knowledge on the relationship between link deformation and motion precision is useful in the design of parallel manipulators for high performing dynamic responses. Originality/value This work establishes the relationship between motion precision and the amount of link deformation in parallel manipulators.


Author(s):  
Taro Handa ◽  
Hiroaki Miyachi ◽  
Hatsuki Kakuno ◽  
Takaya Ozaki

A mechanism of cavity-induced pressure oscillation in supersonic flows is not well understood in spite of a lot of former investigations. Especially, the process by which the pressure wave is generated and the path of the pressure wave propagating inside the cavity remain unclear. In order to clarify these, the oscillatory behaviors in the supersonic flow over a rectangular cavity are visualized by the schlieren method with a high-speed camera in the present study. The inlet Mach number of the flow is 1.68. The length and depth of the cavity are 14.0mm and 11.7mm respectively; i.e., the length-to-depth ratio of the cavity is 1.20. The pressure oscillation near the trailing edge of the cavity is also measured by use of the semiconductor-type pressure transducer simultaneously with the visualization. As a result, the pressure waves propagating inside as well as outside the cavity are successfully visualized. In addition, the relationship between the shear layer displacement, pressure wave generation and pressure oscillation at the trailing edge of the cavity are clarified experimentally.


Sign in / Sign up

Export Citation Format

Share Document