Analysis of the efficiency of methods for retrieval of vertical profile of atmospheric temperature from molecular scattering at the main lidar of the Siberian lidar station

2021 ◽  
Author(s):  
Sergey M. Bobrovnikov ◽  
Viktor I. Zharkov ◽  
Alexander I. Nadeev ◽  
Dmitriy A. Trifonov
2020 ◽  
Vol 13 (12) ◽  
pp. 6837-6852
Author(s):  
Seidai Nara ◽  
Tomohiro O. Sato ◽  
Takayoshi Yamada ◽  
Tamaki Fujinawa ◽  
Kota Kuribayashi ◽  
...  

Abstract. Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the upper stratosphere. The HCl molecule is observed to obtain long-term quantitative estimations of the total budget of the stratospheric chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from space. The HCl vertical profile from the upper troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparison with other measurements and via theoretical error analysis. We used the SMILES level-2 research product version 3.0.0. The period of the SMILES HCl observation was from 12 October 2009 to 21 April 2010, and the latitude coverage was 40∘ S–65∘ N. The average HCl vertical profile showed an increase with altitude up to the stratopause (∼ 45 km), approximately constant values between the stratopause and the upper mesosphere (∼ 80 km), and a decrease from the mesopause to the lower thermosphere (∼ 100 km). This behavior was observed in all latitude regions and reproduced by the Whole Atmosphere Community Climate Model in the specified dynamics configuration (SD-WACCM). We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from Microwave Limb Sounder (MLS) on the Aura satellite, as well as from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT and the TErahertz and submillimeter LImb Sounder (TELIS) (balloon borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES agreed well with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km (within 10 % between 30 and 40 km; there is a larger discrepancy below 30 km), respectively. The SMILES HCl concentration was smaller than those of MLS and ACE-FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv (12 %–15 %) at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The Jacobian for the temperature explains the negative bias of the SMILES HCl concentrations at 50–60 km.


2021 ◽  
Author(s):  
Sergey M. Bobrovnikov ◽  
Evgenii V. Gorlov ◽  
Viktor I. Zharkov ◽  
Nikolai G. Zaytsev ◽  
Aleksandr I. Nadeev ◽  
...  

2020 ◽  
Author(s):  
Seidai Nara ◽  
Tomohiro O. Sato ◽  
Takayoshi Yamada ◽  
Tamaki Fujinawa ◽  
Kota Kuribayashi ◽  
...  

Abstract. Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the stratosphere. The HCl molecule has been observed to obtain long-term quantitative estimations of total budget of the stratospheric anthropogenic chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the superconducting submillimeter-wave limb-emission sounder (SMILES) from space. We used the SMILES Level-2 research product version 3.0.0. The period of the SMILES HCl observation was from October 12, 2009 to April 21, 2010, and the latitude coverage was 40S–65N. The average HCl vertical profile showed an increase with altitude up to the stratopause (~ 45 km), approximately constant values between the stratopause and the upper mesosphere (~ 80 km), and a decrease from the mesopause to the lower thermosphere (~ 100 km). This behavior was observed in the all latitude regions, and reproduced by the SD-WACCM model. We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from MLS on the Aura satellite, as well as from ACE-FTS on SCISAT and from TELIS (balloon-borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES well agreed with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km, respectively. The SMILES HCl concentration was smaller than those of MLS and ACE/FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The jacobian for the temperature explains the negative bias of the SMILES HCl concentration at 50–60 km. The HCl vertical profile from the middle troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparisons with other measurements and via theoretical error analysis.


Author(s):  
Chihiro Kaito ◽  
Yoshio Saito

The direct evaporation of metallic oxides or sulfides does not always given the same compounds with starting material, i.e. decomposition took place. Since the controll of the sulfur or selenium vapors was difficult, a similar production method for oxide particles could not be used for preparation of such compounds in spite of increasing interest in the fields of material science, astrophysics and mineralogy. In the present paper, copper metal was evaporated from a molybdenum silicide heater which was proposed by us to produce the ultra-fine particles in reactive gas as shown schematically in Figure 1. Typical smoke by this method in Ar gas at a pressure of 13 kPa is shown in Figure 2. Since the temperature at a location of a few mm below the heater, maintained at 1400° C , were a few hundred degrees centigrade, the selenium powder in a quartz boat was evaporated at atmospheric temperature just below the heater. The copper vapor that evaporated from the heater was mixed with the stream of selenium vapor,and selenide was formed near the boat. If then condensed by rapid cooling due to the collision with inert gas, thus forming smoke similar to that from the metallic sulfide formation. Particles were collected and studied by a Hitachi H-800 electron microscope.Figure 3 shows typical EM images of the produced copper selenide particles. The morphology was different by the crystal structure, i.e. round shaped plate (CuSe;hexagona1 a=0.39,C=l.723 nm) ,definite shaped p1 ate(Cu5Se4;Orthorhombic;a=0.8227 , b=1.1982 , c=0.641 nm) and a tetrahedron(Cu1.8Se; cubic a=0.5739 nm). In the case of compound ultrafine particles there have been no observation for the particles of the tetrahedron shape. Since the crystal structure of Cu1.8Se is the anti-f1uorite structure, there has no polarity.


2013 ◽  
Vol 2 (1) ◽  
pp. 22-26
Author(s):  
Joanna Czekaj ◽  
Kamil Trepka

Abstract Goczałkowice reservoir is one of the main source of drinking water for Upper Silesia Region. In reference to Water Frame Directive matter since 2010 the strategic research project: „Integrated system supporting management and protection of dammed reservoir (ZiZoZap)”, which is being conducted on Goczałkowice reservoir, has been pursued. In the framework of this project complex groundwater monitoring is carried on. One aspect is vadose zone research, conducted to obtain information about changes in chemical composition of infiltrating water and mass transport within this zone. Based on historical data and the structural model of direct catchment of Goczałkowice reservoir location of the vadose zone research site was selected. At the end of November 2012 specially designed lysimeter was installed with 10 MacroRhizon samplers at each lithological variation in unsaturated zone. This lysimeter, together with nested observation wells, located in the direct proximity, create the vadose zone research site which main aim is specifying the amount of nitrate transport in the vertical profile.


Sign in / Sign up

Export Citation Format

Share Document