Human-robot interaction modeling and simulation of supervisory control and situational awareness during field experimentation with military manned and unmanned ground vehicles

Author(s):  
Tony Johnson ◽  
Jason Metcalfe ◽  
Benjamin Brewster ◽  
Christopher Manteuffel ◽  
Matthew Jaswa ◽  
...  
Author(s):  
Venkata Sirimuvva Chirala ◽  
Saravanan Venkatachalam ◽  
Jonathon Smereka ◽  
Sam Kassoumeh

Abstract There has been unprecedented development in the field of unmanned ground vehicles (UGVs) over the past few years. UGVs have been used in many fields including civilian and military with applications such as military reconnaissance, transportation, and search and research missions. This is due to their increasing capabilities in terms of performance, power, and tackling risky missions. The level of autonomy given to these UGVs is a critical factor to consider. In many applications of multi-robotic systems like “search-and-rescue” missions, teamwork between human and robots is essential. In this paper, given a team of manned ground vehicles (MGVs) and unmanned ground vehicles (UGVs), the objective is to develop a model which can minimize the number of teams and total distance traveled while considering human-robot interaction (HRI) studies. The human costs of managing a team of UGVs by a manned ground vehicle (MGV) are based on human-robot interaction (HRI) studies. In this research, we introduce a combinatorial, multi objective ground vehicle path planning problem which takes human-robot interactions into consideration. The objective of the problem is to find: ideal number of teams of MGVs-UGVs that follow a leader-follower framework where a set of UGVs follow an MGV; and path for each team such that the missions are completed efficiently.


Author(s):  
Peter N. Squire ◽  
Raja Parasuraman

To achieve effective human-robot interaction (HRI) it is important to determine what types of supervisory control interfaces lead to optimal human-robot teaming. Research in HRI has demonstrated that operators controlling fewer robots against opponents of equal strength face greater challenges when control is restricted to only automation. Using human-in-the-loop evaluations of delegation-type interfaces, the present study examined the challenges and outcomes of a single operator supervising (1) more or less robots than a simulated adversary, with either a (2) flexible or restricted control interface. Testing was conducted with 12 paid participants using the RoboFlag simulation environment. Results from this experiment support past findings of execution timing deficiencies related to automation brittleness, and present new findings that indicate that successful teaming between a single human operator and a robotic team is affected by the number of robots and the type of interface.


Author(s):  
Jay Roltgen ◽  
Stephen Gilbert

In this paper we investigate whether the use of a multitouch interface allows users of a supervisory control system to perform tasks more effectively than possible with a mouse-based interface. Supervisory control interfaces are an active field of research, but so far have generally utilized mouse-based interaction. Additionally, most such interfaces require a skilled operator due to their intrinsic complexity. We present an interface for controlling multiple unmanned ground vehicles that is conducive to multitouch as well as mouse-based interaction, which allows us to evaluate novice users’ performance in several areas. Results suggest that a multitouch interface can be used as effectively as a mouse-based interface for certain tasks which are relevant in a supervisory control environment.


2019 ◽  
Vol 6 (2) ◽  
pp. 103
Author(s):  
Erik Danford Klein ◽  
Gary Backous ◽  
Thomas M. Schnieders ◽  
Zhonglun Wang ◽  
Richard T. Stone

Sign in / Sign up

Export Citation Format

Share Document