scholarly journals Chromatin three-dimensional interactions mediate genetic effects on gene expression

Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. eaat8266 ◽  
Author(s):  
O. Delaneau ◽  
M. Zazhytska ◽  
C. Borel ◽  
G. Giannuzzi ◽  
G. Rey ◽  
...  

Studying the genetic basis of gene expression and chromatin organization is key to characterizing the effect of genetic variability on the function and structure of the human genome. Here we unravel how genetic variation perturbs gene regulation using a dataset combining activity of regulatory elements, gene expression, and genetic variants across 317 individuals and two cell types. We show that variability in regulatory activity is structured at the intra- and interchromosomal levels within 12,583 cis-regulatory domains and 30 trans-regulatory hubs that highly reflect the local (that is, topologically associating domains) and global (that is, open and closed chromatin compartments) nuclear chromatin organization. These structures delimit cell type–specific regulatory networks that control gene expression and coexpression and mediate the genetic effects of cis- and trans-acting regulatory variants on genes.

2017 ◽  
Author(s):  
O. Delaneau ◽  
M. Zazhytska ◽  
C. Borel ◽  
C. Howald ◽  
S. Kumar ◽  
...  

SummaryGenome-wide studies on the genetic basis of gene expression and the structural properties of chromatin have considerably advanced our understanding of the function of the human genome. However, it remains unclear how structure relates to function and, in this work, we aim at bridging both by assembling a dataset that combines the activity of regulatory elements (e.g. enhancers and promoters), expression of genes and genetic variations of 317 individuals and across two cell types. We show that the regulatory activity is structured within 12,583 Cis Regulatory Domains (CRDs) that are cell type specific and highly reflective of the local (i.e. Topologically Associating Domains) and global (i.e. A/B nuclear compartments) nuclear organization of the chromatin. These CRDs essentially delimit the sets of active regulatory elements involved in the transcription of most genes, thereby capturing complex regulatory networks in which the effects of regulatory variants are propagated and combined to finally mediate expression Quantitative Trait Loci. Overall, our analysis reveals the complexity and specificity of cis and trans regulatory networks and their perturbation by genetic variation.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 235 ◽  
Author(s):  
Hannah Swahn ◽  
Ann Harris

The cystic fibrosis transmembrane conductance regulator (CFTR) gene is an attractive target for gene editing approaches, which may yield novel therapeutic approaches for genetic diseases such as cystic fibrosis (CF). However, for gene editing to be effective, aspects of the three-dimensional (3D) structure and cis-regulatory elements governing the dynamic expression of CFTR need to be considered. In this review, we focus on the higher order chromatin organization required for normal CFTR locus function, together with the complex mechanisms controlling expression of the gene in different cell types impaired by CF pathology. Across all cells, the CFTR locus is organized into an invariant topologically associated domain (TAD) established by the architectural proteins CCCTC-binding factor (CTCF) and cohesin complex. Additional insulator elements within the TAD also recruit these factors. Although the CFTR promoter is required for basal levels of expression, cis-regulatory elements (CREs) in intergenic and intronic regions are crucial for cell-specific and temporal coordination of CFTR transcription. These CREs are recruited to the promoter through chromatin looping mechanisms and enhance cell-type-specific expression. These features of the CFTR locus should be considered when designing gene-editing approaches, since failure to recognize their importance may disrupt gene expression and reduce the efficacy of therapies.


2021 ◽  
Author(s):  
Vinay K Kartha ◽  
Fabiana M Duarte ◽  
Yan Hu ◽  
Sai Ma ◽  
Jennifer G Chew ◽  
...  

Cells require coordinated control over gene expression when responding to environmental stimuli. Here, we apply scATAC-seq and scRNA-seq in resting and stimulated human blood cells. Collectively, we generate ~91,000 single-cell profiles, allowing us to probe the cis -regulatory landscape of immunological response across cell types, stimuli and time. Advancing tools to integrate multi-omic data, we develop FigR - a framework to computationally pair scATAC-seq with scRNA-seq cells, connect distal cis -regulatory elements to genes, and infer gene regulatory networks (GRNs) to identify candidate TF regulators. Utilizing these paired multi-omic data, we define Domains of Regulatory Chromatin (DORCs) of immune stimulation and find that cells alter chromatin accessibility prior to production of gene expression at time scales of minutes. Further, the construction of the stimulation GRN elucidates TF activity at disease-associated DORCs. Overall, FigR enables the elucidation of regulatory interactions across single-cell data, providing new opportunities to understand the function of cells within tissues.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1183-1183
Author(s):  
Omer Schwartzman ◽  
Zohar Mukamel ◽  
Shai Izraeli ◽  
Amos Tanay

Abstract Background: The role of the spatial three dimensional (3D) chromatin organization in regulation of gene expression is at the forefront of epigenetic research. Chromatin Conformation Capture (3C) technologies are increasingly being used to map physical proximity between distal regulatory elements. The underlying principal is similar in all these assays and involves chromatin cross-linking, digestion, and ligation. The proximity ligation junctions are then analyzed as a proxy to physical proximity. These methods vary in terms of scope and resolution, from Hi-C, which allows whole-genome coverage but requires massive sequencing burden, to traditional 3C which is simpler but allows only pairwise contact mapping. Of particular recent interest are methods allowing targeted sequencing of ligation products such as 4C-seq. However, 4C is heavily dependent on PCR amplification and requires elaborate statistical models to account for biases introduced. Consequently, a major drawback of all current methodologies is the lack of precise quantitation. To control for these drawbacks we developed a new simple and directly quantitative 4C methodology applying the concept of Unique Molecular Identifiers (UMI). Methods: We have developed a modified 4C-seq protocol (see figure). After the standard fixation, digestion and ligation, the chromatin DNA is sonicated, resulting in random breakpoints that are exploited as bona-fida UMIs. To target specific loci we utilize a version of ligation mediated (LM)-PCR, ligating a universal adapter to one end of the insert and a target-specific primer, to focus on the region of interest, to the other end. In addition, we developed a novel computational framework to process the data and filter potential artifacts and non-specific priming events. We applied this highly quantitative method to study the chromatin spatial landscape of important megakaryocytic and eryhtroid genes - GATA1, ANK1 and the HBB region. We generated high-complexity contact profiles of these regions in six cell lines - four Megaerythroid cell lines (CMK, CMY, K562 and CHRF), that express these genes at variable levels, and a T-ALL cell line (DND41) and primary human fibroblasts where these loci are silenced. Results: We are able to recover on average 5,000-20,000 ligation events per 1μg of starting 4C template. Estimating the sequencing requirement by inference and subsampling, we find that 500,000 reads are enough to recover more than 90% of the ligation events. By applying our assay to GATA1 locus we were able to detect and precisely quantify hotspots of differential contact intensity, likely to reflect differences in the contacting probabilities between erythroid and megakaryocytic cells. These regions coincided with active histone marks in either of the cell types. Next, we interrogated ANK1 promoter region and detected differential contact intensity of the promoter with enhancer elements -15kb, and -27kb upstream and +15kb downstream of the transcription start site (TSS). The differences were also correlated with the expression pattern of ANK1 in these cells. Finally we utilized our assay to multiplex different regions in the HBB locus and generated very high complexity contact profiles of the region revealing activity-associated hierarchical looping structure that was previously not described. Conclusions: We have developed a powerful sensitive methodology to study the chromatin structure of specific targets in a multiplexed, cost-effective and simple manner. We applied it to a variety of regions and cells and were able to precisely detect and quantify minute differences in contact intensities between cells belonging to related but different lineages. We suggest UMI-4C as a precise and practical tool to study 3D epigenetic regulation of gene expression. Figure 1. A scheme of the UMI-4C methodology and a snapshot of the GATA1 locus in CMK megakaryocytic-eryhthroid and K562 erythroid leukemia cells. Figure 1. A scheme of the UMI-4C methodology and a snapshot of the GATA1 locus in CMK megakaryocytic-eryhthroid and K562 erythroid leukemia cells. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Alejandro Gil-Gálvez ◽  
Sandra Jiménez-Gancedo ◽  
Rafael D. Acemel ◽  
Stephanie Bertrand ◽  
Michael Schubert ◽  
...  

AbstractSignaling pathways control a large number of gene regulatory networks (GRNs) during animal development, acting as major tools for body plan formation1. Remarkably, in contrast to the large number of transcription factors present in animal genomes, only a few of these pathways operate during development2. Moreover, most of them are largely conserved along metazoan evolution3. How evolution has generated a vast diversity of animal morphologies with such a limited number of tools is still largely unknown. Here we show that gain of interconnectivity between signaling pathways, and the GRNs they control, may have played a critical contribution to the origin of vertebrates. We perturbed the retinoic acid, Wnt, FGF and Nodal signaling pathways during gastrulation in amphioxus and zebrafish and comparatively examined its effects in gene expression and cis-regulatory elements (CREs). We found that multiple developmental genes gain response to these pathways through novel CREs in the vertebrate lineage. Moreover, in contrast to amphioxus, many of these CREs are highly interconnected and respond to multiple pathways in zebrafish. Furthermore, we found that vertebrate-specific cell types are more enriched in highly interconnected genes than those tissues with more ancestral origin. Thus, the increase of CREs in vertebrates integrating inputs from different signaling pathways probably contributed to gene expression complexity and the formation of new cell types and morphological novelties in this lineage.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eric Schoger ◽  
Sara Lelek ◽  
Daniela Panáková ◽  
Laura Cecilia Zelarayán

Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.


2020 ◽  
Author(s):  
SK Reilly ◽  
SJ Gosai ◽  
A Gutierrez ◽  
JC Ulirsch ◽  
M Kanai ◽  
...  

AbstractCRISPR screens for cis-regulatory elements (CREs) have shown unprecedented power to endogenously characterize the non-coding genome. To characterize CREs we developed HCR-FlowFISH (Hybridization Chain Reaction Fluorescent In-Situ Hybridization coupled with Flow Cytometry), which directly quantifies native transcripts within their endogenous loci following CRISPR perturbations of regulatory elements, eliminating the need for restrictive phenotypic assays such as growth or transcript-tagging. HCR-FlowFISH accurately quantifies gene expression across a wide range of transcript levels and cell types. We also developed CASA (CRISPR Activity Screen Analysis), a hierarchical Bayesian model to identify and quantify CRE activity. Using >270,000 perturbations, we identified CREs for GATA1, HDAC6, ERP29, LMO2, MEF2C, CD164, NMU, FEN1 and the FADS gene cluster. Our methods detect subtle gene expression changes and identify CREs regulating multiple genes, sometimes at different magnitudes and directions. We demonstrate the power of HCR-FlowFISH to parse genome-wide association signals by nominating causal variants and target genes.


2019 ◽  
Author(s):  
Robin A. Sorg ◽  
Clement Gallay ◽  
Jan-Willem Veening

AbstractStreptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND and IMPLY gates. Finally, we demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


2019 ◽  
Vol 18 ◽  
pp. 117693511985986 ◽  
Author(s):  
Salam A Assi ◽  
Constanze Bonifer ◽  
Peter N Cockerill

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFβ and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.


Sign in / Sign up

Export Citation Format

Share Document