scholarly journals Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification

2013 ◽  
Vol 80 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Ralf Moeller ◽  
Marina Raguse ◽  
Günther Reitz ◽  
Ryuichi Okayasu ◽  
Zuofeng Li ◽  
...  

ABSTRACTThe roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), inBacillus subtilisspore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation.

2007 ◽  
Vol 189 (8) ◽  
pp. 3306-3311 ◽  
Author(s):  
Ralf Moeller ◽  
Erko Stackebrandt ◽  
Günther Reitz ◽  
Thomas Berger ◽  
Petra Rettberg ◽  
...  

ABSTRACT The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for repair of DNA double-strand breaks.


2007 ◽  
Vol 190 (3) ◽  
pp. 1134-1140 ◽  
Author(s):  
Ralf Moeller ◽  
Peter Setlow ◽  
Gerda Horneck ◽  
Thomas Berger ◽  
Günther Reitz ◽  
...  

ABSTRACT The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via α/β-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and α/β-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the α/β-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.


2020 ◽  
Vol 87 ◽  
pp. 103353 ◽  
Author(s):  
Yifan Zhang ◽  
Nina Huber ◽  
Ralf Moeller ◽  
Jörg Stülke ◽  
Barbora Dubovcova ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Holly Anne Martin ◽  
Katelyn E. Porter ◽  
Carmen Vallin ◽  
Tatiana Ermi ◽  
Natalie Contreras ◽  
...  

2006 ◽  
Vol 188 (16) ◽  
pp. 5783-5796 ◽  
Author(s):  
Antje Michel ◽  
Franziska Agerer ◽  
Christof R. Hauck ◽  
Mathias Herrmann ◽  
Joachim Ullrich ◽  
...  

ABSTRACT Staphylococcus aureus is an important pathogen, causing a wide range of infections including sepsis, wound infections, pneumonia, and catheter-related infections. In several pathogens ClpP proteases were identified by in vivo expression technologies to be important for virulence. Clp proteolytic complexes are responsible for adaptation to multiple stresses by degrading accumulated and misfolded proteins. In this report clpP, encoding the proteolytic subunit of the ATP-dependent Clp protease, was deleted, and gene expression of ΔclpP was determined by global transcriptional analysis using DNA-microarray technology. The transcriptional profile reveals a strong regulatory impact of ClpP on the expression of genes encoding proteins that are involved in the pathogenicity of S. aureus and adaptation of the pathogen to several stresses. Expression of the agr system and agr-dependent extracellular virulence factors was diminished. Moreover, the loss of clpP leads to a complete transcriptional derepression of genes of the CtsR- and HrcA-controlled heat shock regulon and a partial derepression of genes involved in oxidative stress response, metal homeostasis, and SOS DNA repair controlled by PerR, Fur, MntR, and LexA. The levels of transcription of genes encoding proteins involved in adaptation to anaerobic conditions potentially regulated by an Fnr-like regulator were decreased. Furthermore, the expression of genes whose products are involved in autolysis was deregulated, leading to enhanced autolysis in the mutant. Our results indicate a strong impact of ClpP proteolytic activity on virulence, stress response, and physiology in S. aureus.


2019 ◽  
Vol 218 (3) ◽  
pp. 732-734 ◽  
Author(s):  
Katharina Schlacher

The ataxia-telangiectasia mutated (ATM) gene regulates DNA damage repair, oxidative stress, and mitochondrial processes. In this issue, Chow et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201806197) connects ATM’s oxidative stress response functions to the sensing of metabolic ATP energetics distinctively important in high energy–demanding Purkinje brain cells, which could explain the most distinct A-T patient feature, cerebellar ataxia.


2020 ◽  
Vol 295 (41) ◽  
pp. 14236-14247
Author(s):  
Janani Prahlad ◽  
Yifeng Yuan ◽  
Jiusheng Lin ◽  
Chou-Wei Chang ◽  
Dirk Iwata-Reuyl ◽  
...  

DUF328 family proteins are present in many prokaryotes; however, their molecular activities are unknown. The Escherichia coli DUF328 protein YaaA is a member of the OxyR regulon and is protective against oxidative stress. Because uncharacterized proteins involved in prokaryotic oxidative stress response are rare, we sought to learn more about the DUF328 family. Using comparative genomics, we found a robust association between the DUF328 family and genes involved in DNA recombination and the oxidative stress response. In some proteins, DUF328 domains are fused to other domains involved in DNA binding, recombination, and repair. Cofitness analysis indicates that DUF328 family genes associate with recombination-mediated DNA repair pathways, particularly the RecFOR pathway. Purified recombinant YaaA binds to dsDNA, duplex DNA containing bubbles of unpaired nucleotides, and Holliday junction constructs in vitro with dissociation equilibrium constants of 200–300 nm. YaaA binds DNA with positive cooperativity, forming multiple shifted species in electrophoretic mobility shift assays. The 1.65-Å resolution X-ray crystal structure of YaaA reveals that the protein possesses a new fold that we name the cantaloupe fold. YaaA has a positively charged cleft and a helix-hairpin-helix DNA-binding motif found in other DNA repair enzymes. Our results demonstrate that YaaA is a new type of DNA-binding protein associated with the oxidative stress response and that this molecular function is likely conserved in other DUF328 family members.


PROTEOMICS ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 1600178 ◽  
Author(s):  
Elia Calderini ◽  
Hasan Ufuk Celebioglu ◽  
Julia Villarroel ◽  
Susanne Jacobsen ◽  
Birte Svensson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document