scholarly journals Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer

2021 ◽  
Vol 9 (7) ◽  
pp. e002503
Author(s):  
Miok Kim ◽  
Yong Ki Min ◽  
Jinho Jang ◽  
Hyejin Park ◽  
Semin Lee ◽  
...  

BackgroundAlthough cancer immunotherapy is one of the most effective advanced-stage cancer therapies, no clinically approved cancer immunotherapies currently exist for colorectal cancer (CRC). Recently, programmed cell death protein 1 (PD-1) blockade has exhibited clinical benefits according to ongoing clinical trials. However, ongoing clinical trials for cancer immunotherapies are focused on PD-1 signaling inhibitors such as pembrolizumab, nivolumab, and atezolizumab. In this study, we focused on revealing the distinct response mechanism for the potent CD73 ectoenzyme selective inhibitor AB680 as a promising drug candidate that functions by blocking tumorigenic ATP/adenosine signaling in comparison to current therapeutics that block PD-1 to assess the value of this drug as a novel immunotherapy for CRC.MethodsTo understand the distinct mechanism of AB680 in comparison to that of a neutralizing antibody against murine PD-1 used as a PD-1 blocker, we performed single-cell RNA sequencing of CD45+ tumor-infiltrating lymphocytes from untreated controls (n=3) and from AB680-treated (n=3) and PD-1-blockade-treated murine CRC in vivo models. We also used flow cytometry, Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS) models, and in vitro functional assays to validate our new findings.ResultsWe initially observed that the expressions of Nt5e (a gene for CD73) and Entpd1 (a gene for CD39) affect T cell receptor (TCR) diversity and transcriptional profiles of T cells, thus suggesting their critical roles in T cell exhaustion within tumor. Importantly, PD-1 blockade significantly increased the TCR diversity of Entpd1-negative T cells and Pdcd1-positive T cells. Additionally, we determined that AB680 improved the anticancer functions of immunosuppressed cells such as Treg and exhausted T cells, while the PD-1 blocker quantitatively reduced Malat1high Treg and M2 macrophages. We also verified that PD-1 blockade induced Treg depletion in AOM/DSS CRC in vivo models, and we confirmed that AB680 treatment caused increased activation of CD8+ T cells using an in vitro T cell assay.ConclusionsThe intratumoral immunomodulation of CD73 inhibition is distinct from PD-1 inhibition and exhibits potential as a novel anticancer immunotherapy for CRC, possibly through a synergistic effect when combined with PD-1 blocker treatments. This study may contribute to the ongoing development of anticancer immunotherapies targeting refractory CRC.

Gut ◽  
2018 ◽  
Vol 67 (11) ◽  
pp. 1984-1994 ◽  
Author(s):  
Eleonora Cremonesi ◽  
Valeria Governa ◽  
Jesus Francisco Glaus Garzon ◽  
Valentina Mele ◽  
Francesca Amicarella ◽  
...  

ObjectiveTumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers.DesignExpression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing.ResultsCRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival.ConclusionsGut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 639 ◽  
Author(s):  
Younghyun Lim ◽  
Seyoung Kim ◽  
Sehoon Kim ◽  
Dong-In Kim ◽  
Kyung Won Kang ◽  
...  

The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A6.2-A7
Author(s):  
LA King ◽  
R Lameris ◽  
RC Roovers ◽  
P Parren ◽  
TD de Gruijl ◽  
...  

Vγ9Vδ2-T cells include a unique and potent subset of T cells which play an important role in tumor defense. Vγ9Vδ2-T cells recognize and can lyse butyrophilin 3A1-expressing target cells with elevated levels of non-peptide phosphoantigens (pAg), induced by cell stress or malignancy. To date, Vγ9Vδ2-T cell based cancer immunotherapeutic approaches were well tolerated and in some cases capable of inducing relevant clinical responses. In an effort to improve the efficacy and consistency of Vγ9Vδ2-T cell based cancer immunotherapy, we designed a bispecific VHH that binds to both Vγ9Vδ2-T cells and EGFR expressed by tumor cells and results in the target-specific activation of Vγ9Vδ2-T cells and subsequent lysis of colorectal cancer cell lines and primary colorectal cancer samples both in vitro and in an in vivo mouse xenograft model. Of note, tumor cell lysis was independent of mutations in KRAS and BRAF that are known to impair the efficacy of clinically registered anti-EGFR monoclonal antibodies as well as common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific VHH, this immunotherapeutic approach can in principle be applied to a large group of cancer types.Disclosure InformationL.A. King: None. R. Lameris: None. R.C. Roovers: None. P. Parren: None. T.D. de Gruijl: None. H.J. van der Vliet: None.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A143-A143
Author(s):  
Jonathan Terrett ◽  
Brigid Mcewan ◽  
Daniel Hostetter ◽  
Luis Gamboa ◽  
Meghna Kuppuraju ◽  
...  

BackgroundCD33 is the most consistently expressed antigen in AML, with high levels and homogeneous expression observed in malignant AML cells from most patients, including those with relapsed disease. Normal myelomonocytic cell lineages and a percentage of hematopoietic progenitors also express CD33, and the extreme myeloablation caused by the CD33-targeted antibody-drug conjugate (ADC) gemtuzumab ozogamicin reinforced concerns about targeting this antigen with more potent agents such as T-cell engaging bispecific antibodies and CAR-T cells. We have shown previously that allogeneic CRISPR/Cas9 gene-edited CAR-T cells targeting CD33 with TRAC disruption to reduce GvHD and B2M disruption to reduce allogeneic host rejection could eliminate tumors in xenograft models of AMLMethodsGiven that off-target activity of the toxin could contribute to the myeloablation seen with CD33-targeted ADCs, we created in vitro and in vivo models to examine reconstitution of the myeloid compartment following treatment of CD33-targeted allogeneic CAR-T cells.ResultsAlthough co-culture of CD34+ stem cells in vitro with our CD33-targeted allogeneic CAR-T cells did significantly deplete the cell population, colonies still formed after removal of the CAR-T cells as the presumably CD33-negative stem/progenitor cells expanded and differentiated. A similar phenomenon was observed in vivo with CD34 humanized mice bearing an AML tumor (THP-1 cells) and treated with the CD33-targeted allogeneic CAR-T cells. The CAR-T cells completely eradicated the THP-1 tumor but did not lead to long-term myelosuppression or B cell aplasia.ConclusionsThus, allogeneic CRISPR/Cas9 multiplex gene-edited CD33-targeted CAR-T cell therapy may be both efficacious and tolerable in AML.


2021 ◽  
Vol 118 (25) ◽  
pp. e2023752118
Author(s):  
David O’Sullivan ◽  
Michal A. Stanczak ◽  
Matteo Villa ◽  
Franziska M. Uhl ◽  
Mauro Corrado ◽  
...  

Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.


Blood ◽  
2004 ◽  
Vol 103 (8) ◽  
pp. 3111-3116 ◽  
Author(s):  
Federica M. Marelli-Berg ◽  
Martha J. James ◽  
John Dangerfield ◽  
Julian Dyson ◽  
Maggie Millrain ◽  
...  

Abstract The physiologic significance of MHC-peptide complex presentation by endothelial cells (ECs) to trafficking T lymphocytes remains unresolved. On the basis of our observation that cognate recognition of ECs enhanced transendothelial migration of antigen-specific T lymphocytes in vitro, we have proposed that by displaying antigenic peptides from the underlying tissue, ECs promote the recruitment of antigen-specific T cells. In this study, we have tested this hypothesis by comparing the trafficking of HY-specific T lymphocytes into antigenic and nonantigenic tissue using in vivo models of T-cell recruitment. Up-regulated expression of H2 molecules presenting endogenous antigen in the peritoneal mesothelium and vessels led to the local recruitment of HY-specific T cells in male, but not female, mice. Intravital microscopy experiments analyzing EC–HY-specific T-cell interactions in the cremasteric vascular bed revealed that cognate recognition of the endothelium results in enhanced diapedesis of T cells into the tissue, while not affecting rolling and adhesion. Our results are consistent with the hypothesis that, under inflammatory conditions, antigen presentation by the endothelium contributes to the development and specificity of T-cell–mediated inflammation by favoring the selective migration of antigen-specific T cells. (Blood. 2004;103:3111-3116)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 252-252 ◽  
Author(s):  
Paul Rennert ◽  
Lihe Su ◽  
Fay Dufort ◽  
Alyssa Birt ◽  
Tom Sanford ◽  
...  

Introduction CAR T cells that recognize the antigen CD19 (CAR19s) have achieved remarkable success in otherwise untreatable B cell malignancies including refractory and relapsed ALL and NHL. However, clinical data from diverse CAR19 trials, and real-world experience with the approved CAR19 therapeutics (tisagenlecleucel and axicabtagene ciloleucel), highlight a critical issue, that of patient relapse due to the loss of expression of the target antigen (CD19) or the antigenic epitope. Antigen loss relapse rate of up to 50% have been reported across indications (adult ALL, pediatric ALL, adult NHL) irrespective of the specific CAR19 used. Attempts to treat patients who have relapsed from CAR19 treatment include provision of a CAR T cell to a second antigen, for example CD22. Such attempts have met with limited success, further, many patients cannot tolerate a second regimen of apheresis, consolidation, lymphodepletion and CAR T infusion. Importantly, many of the patients relapsing with CD19-negative malignancies still have detectable levels of CAR19 T cells in circulation, since the CAR19s persist in the presence of normal B cells being produced by the bone marrow (these B cells are CD19-positive). Therefore, a technology that reactivates the patient-resident CAR19s to attack the relapsing tumor cell would be a highly attractive alternative to subsequent CAR T therapy. Here we present this technology and illustrate its' ability to prevent relapses and importantly, to reverse relapses in vivo. Experimental Procedures A stabilized form of the CD19 extracellular domain (ECD) was cloned in frame with an anti-CD20 scFv and an anti-albumin VHH, to create a monomeric CD19-ECD-anti-CD20 bridging protein with extended circulating half-life characteristics. The protein was purified from a mammalian cell expression system. Protein stability, binding affinities, and cytotoxic activity were analyzed in vitro. We utilized CD19-positive, CD20-positive and double positive cell lines to assess single and dual antigen activity. We utilized patient derived CD20-positive/CD19-negative cells to demonstrate translational relevance. Finally, we used single and dual flank in vivo models to assess the potency of the bridging protein in the relapse setting and in the prevention setting. Results and Discussion The CD19-anti-CD20 bridging protein was shown to be expressed at high levels, readily purified and highly stable (no aggregation or clipping, thermostable, and stable in media/serum at 37oC for extended periods). The purified bridging protein directed CAR19 cytotoxicity against CD19-negative/CD20-positive cells with superb potency (IC50 = 23pM = 1.6 ng/ml). CAR19 T cells that were previously activated by a CD19-positive tumor cell could subsequently be activated by a CD19-negative tumor cell in the presence of the CD19-anti-CD20 bridging protein. In vitro, a CAR19 T cells found and eliminated CD19-negative cells "hidden" in a population of dual-positive cells in a mixing experiment but only if the bridging protein was present, otherwise, the CD19-negative cells invariably escaped from CAR19 T cells. The activity of the CD19-anti-CD20 bridging protein extended to CD19-negative/CD20-positive patient-derived cells tested in vitro. In vivo, using a dual flank model, CAR19 T cells plus the injected bridging protein controlled both CD19-positive/CD20-positive and CD19-negative/CD20-positive tumors, while CAR19 alone did not impact the latter tumor. In a relapse setting the growth of a mixture of CD19-positive and CD19-negative cells was merely delayed by CAR19 T cells alone but was eradicated when CAR19 cells were given along with the CD19-anti-CD20 bridging protein injected systemically. Importantly, CAR19 cells that had "lost" control over the mixed population could be restimulated to eliminate the CD19-negative population when the CD19-anti-CD20 bridging protein was added after those cells have begun to escape the initial (CAR19-only) treatment in vivo. These results have led to the identification of a development candidate for the treatment of CD19-negative relapse from CAR19 treatment. The GMP production campaign is underway. The first-in-human trial will enroll patients relapsing from CAR19 therapy with CD19-negative malignancy, in whom CAR19 T cells are shown to still be present. Disclosures Rennert: Aleta Biotherapeutics: Employment, Equity Ownership. Su:Aleta Biotherapeutics: Employment. Dufort:Aleta Biotherapeutics: Employment. Birt:Aleta Biotherapeutics: Employment. Sanford:Aleta Biotherapeutics: Employment. Wu:Aleta Biotherapeutics: Employment. Ambrose:Aleta Biotherapeutics: Employment. Lobb:Aleta Biotherapeutics: Consultancy, Equity Ownership.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A12-A12
Author(s):  
Jun Zhou ◽  
Shuang Zhu ◽  
Hongjuan Zhang ◽  
Lei Zheng ◽  
Mingfa Zang ◽  
...  

BackgroundBispecific T cell engagers (BiTE) is a fast-growing class of immunotherapies. They are bispecific antibody that bind to T cell-surface protein (for example, CD3e) and a specific tumor associate antigen (TAA) on tumor cells, by which to redirect T cells against tumor cells in a MHC-independent manner. A successful example in the clinical is Blinatumomab, a BiTE antibody against CD3/CD19 approved in 2014 to treat acute lymphoblastic leukemia. Currently, many CD3-based BiTE are in clinical trials, including BCMAxCD3, Her2xCD3, CEAxCD3, and PSMAxCD3. To evaluate the efficacy of BiTE in vitro, human peripheral blood monocyte cells (hPBMC) are commonly being used as a source of T cells to co-culture with tumor cells. The disadvantage of using hPBMC is donor-to-donor variability and the availability of the original donor if a study needs to be repeated.MethodsTo overcome this, we proposed to replace hPBMC with T cells from human CD3e (hCD3) genetically engineered mouse models mice (GEMM) for in in vitro coculture assay. T cells were isolated from hCD3 GEMM mice using negative selection mouse T cell isolation kit. Conventional tumor cell lines or luciferase-engineered patient-derived-xenograft (PDX)-derived organoids (PDXO) expressing specific antigens are co-cultured with hCD3 T cells in 96-well plates in the presence of BiTE antibody.ResultsWe measured the killing of tumor cells using either flow cytometry or luciferase activity as readouts. To analyze tumor-reactivity of T cells to cancer cell line or organoids, IFN-gamma in the culture medium was measured and activation markers on T cells was assessed.ConclusionsOur data showed the feasibility of using humanized mice T cells as a replacement for hPBMCs to assess BiTE antibody in vitro. We are further validating the application of murine hCD3 T cells for in vivo models to test bispecific T cell engagers.


Sign in / Sign up

Export Citation Format

Share Document