scholarly journals P.1.11 ‘Creation of classification model using machine learning; to detect dysphonia work-related’

2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A80.2-A80
Author(s):  
Natalia Gilbert ◽  
Rodrigo Assar ◽  
Rodrigo Martinez

The underdiagnosis of occupational disease causes severe damage to the health system. The classification of a disease as a professional is based on the decision on whether the present labor factors are sufficient for the generation of the disease, and this function is carried out by a qualified professional or committee.Occupational dysphonia is one of the 5 most frequent occupational diseases in Chile, whose condition impact on the labor productivity and the quality of life of the patient. Today there are no unified criteria among the occupational qualification decisión makers to decide on the sufficient of laboral factors of occupational dysphonia disease.Computerized systems have been developed to support clinical diagnosis decision-making process; among these, Machine Learning methods have been used to simulate the reasoning of the expert from the analysis and identification of complex patterns in large databases, so in this study it is suggested that the creation of a dysphonia classification model is possible employing Machine Learning tools. For this purpose, 103 cases obtained from patients with qualification results cause by dysphonia was analize in relation to the number of variables studied and their distribution for the observation of the characteristics that give identity to the groups studied. Subsequently, different classification models were developed using Machine Learning and the one that presented the best performance was chosen.Statistical analyzes show that of the 6 models of Machine Learning elaborated, Random Forest was the one that presented the best performance (accuracity=0.83 and Kappa value=0.61), variables that manage to establish identity to each group represent 26.5% of the total of studied variables. The results in this work show the potential of the use of computer tools can be useful as a support tool for diagnosis of occupational disease.

2021 ◽  
pp. 1-9
Author(s):  
Dimitrios P. Panagoulias ◽  
Dionisios N. Sotiropoulos ◽  
George A. Tsihrintzis

The doctrine of the “one size fits all” approach in the field of disease diagnosis and patient management is being replaced by a more per patient approach known as “personalized medicine”. In this spirit, biomarkers are key variables in the research and development of new methods for prognostic and classification model training based on advances in the field of artificial intelligence [1, 2, 3]. Metabolomics refers to the systematic study of the unique chemical fingerprints that cellular processes leave behind. The metabolic profile of a person can provide a snapshot of cell physiology and, by extension, metabolomics provide a direct “functional reading of the physiological state” of an organism. Via employing machine learning methodologies, a general evaluation chart of nutritional biomarkers is formulated and an optimised prediction method for body to mass index is investigated with the aim to discover dietary patterns.


2019 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Changjia Tian ◽  
Varuna De Silva ◽  
Michael Caine ◽  
Steve Swanson

The use of machine learning to identify and classify offensive and defensive strategies in team sports through spatio-temporal tracking data has received significant interest recently in the literature and the global sport industry. This paper focuses on data-driven defensive strategy learning in basketball. Most research to date on basketball strategy learning has focused on offensive effectiveness and is based on the interaction between the on-ball player and principle on-ball defender, thereby ignoring the contribution of the remaining players. Furthermore, most sports analytical systems that provide play-by-play data is heavily biased towards offensive metrics such as passes, dribbles, and shots. The aim of the current study was to use machine learning to classify the different defensive strategies basketball players adopt when deviating from their initial defensive action. An analytical model was developed to recognise the one-on-one (matched) relationships of the players, which is utilised to automatically identify any change of defensive strategy. A classification model is developed based on a player and ball tracking dataset from National Basketball Association (NBA) game play to classify the adopted defensive strategy against pick-and-roll play. The methodology described is the first to analyse the defensive strategy of all in-game players (both on-ball players and off-ball players). The cross-validation results indicate that the proposed technique for automatic defensive strategy identification can achieve up to 69% accuracy of classification. Machine learning techniques, such as the one adopted here, have the potential to enable a deeper understanding of player decision making and defensive game strategies in basketball and other sports, by leveraging the player and ball tracking data.


2021 ◽  
Author(s):  
Gabriel Ricardo Vásquez Morales ◽  
Sergio Mauricio Martínez Monterrubio ◽  
Juan Antonio Recio García ◽  
Pablo Moreno Ger

Abstract The COVID-19 pandemic, which began in late 2019, has become a global public health problem, resulting in large numbers of people infected and dead. One of the greatest challenges in dealing with the disease is to identify those people who are most at risk of becoming infected, seriously ill and dying from the virus, so that they can be isolated in a targeted manner and thus reduce mortality rates. This article proposes the use of machine learning, and specifically of neural networks and random forest to build two complementary models that identify the probability that a person has of dying because of COVID-19. The models are trained with the demographic information and medical history of two population groups: on the one hand, 43,000 people who died from COVID-19 in Colombia during 2020, and on the other hand, a random sample of 43,000 people who became ill with COVID-19 during the same period of time, but later recovered. After training the neural network classification model, evaluation metrics were applied that yielded an 88% accuracy value. However, transparency is a major requirement for the explicability of COVID-19 prognosis. Therefore, a complementary random forest model is trained that allows the identification of the most significant predictors of mortality by COVID-19.


2020 ◽  
Vol 10 (3) ◽  
pp. 104
Author(s):  
Myung Woo ◽  
Brooke Alhanti ◽  
Sam Lusk ◽  
Felicia Dunston ◽  
Stephen Blackwelder ◽  
...  

There is increasing application of machine learning tools to problems in healthcare, with an ultimate goal to improve patient safety and health outcomes. When applied appropriately, machine learning tools can augment clinical care provided to patients. However, even if a model has impressive performance characteristics, prospectively evaluating and effectively implementing models into clinical care remains difficult. The primary objective of this paper is to recount our experiences and challenges in comparing a novel machine learning-based clinical decision support tool to legacy, non-machine learning tools addressing potential safety events in the hospitals and to summarize the obstacles which prevented evaluation of clinical efficacy of tools prior to widespread institutional use. We collected and compared safety events data, specifically patient falls and pressure injuries, between the standard of care approach and machine learning (ML)-based clinical decision support (CDS). Our assessment was limited to performance of the model rather than the workflow due to challenges in directly comparing both approaches. We did note a modest improvement in falls with ML-based CDS; however, it was not possible to determine that overall improvement was due to model characteristics.


2019 ◽  
Vol 7 (4) ◽  
pp. 184-190
Author(s):  
Himani Maheshwari ◽  
Pooja Goswami ◽  
Isha Rana

2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1809
Author(s):  
Mohammed El Amine Senoussaoui ◽  
Mostefa Brahami ◽  
Issouf Fofana

Machine learning is widely used as a panacea in many engineering applications including the condition assessment of power transformers. Most statistics attribute the main cause of transformer failure to insulation degradation. Thus, a new, simple, and effective machine-learning approach was proposed to monitor the condition of transformer oils based on some aging indicators. The proposed approach was used to compare the performance of two machine-learning classifiers: J48 decision tree and random forest. The service-aged transformer oils were classified into four groups: the oils that can be maintained in service, the oils that should be reconditioned or filtered, the oils that should be reclaimed, and the oils that must be discarded. From the two algorithms, random forest exhibited a better performance and high accuracy with only a small amount of data. Good performance was achieved through not only the application of the proposed algorithm but also the approach of data preprocessing. Before feeding the classification model, the available data were transformed using the simple k-means method. Subsequently, the obtained data were filtered through correlation-based feature selection (CFsSubset). The resulting features were again retransformed by conducting the principal component analysis and were passed through the CFsSubset filter. The transformation and filtration of the data improved the classification performance of the adopted algorithms, especially random forest. Another advantage of the proposed method is the decrease in the number of the datasets required for the condition assessment of transformer oils, which is valuable for transformer condition monitoring.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

i-com ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 19-32
Author(s):  
Daniel Buschek ◽  
Charlotte Anlauff ◽  
Florian Lachner

Abstract This paper reflects on a case study of a user-centred concept development process for a Machine Learning (ML) based design tool, conducted at an industry partner. The resulting concept uses ML to match graphical user interface elements in sketches on paper to their digital counterparts to create consistent wireframes. A user study (N=20) with a working prototype shows that this concept is preferred by designers, compared to the previous manual procedure. Reflecting on our process and findings we discuss lessons learned for developing ML tools that respect practitioners’ needs and practices.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 187
Author(s):  
Aaron Barbosa ◽  
Elijah Pelofske ◽  
Georg Hahn ◽  
Hristo N. Djidjev

Quantum annealers, such as the device built by D-Wave Systems, Inc., offer a way to compute solutions of NP-hard problems that can be expressed in Ising or quadratic unconstrained binary optimization (QUBO) form. Although such solutions are typically of very high quality, problem instances are usually not solved to optimality due to imperfections of the current generations quantum annealers. In this contribution, we aim to understand some of the factors contributing to the hardness of a problem instance, and to use machine learning models to predict the accuracy of the D-Wave 2000Q annealer for solving specific problems. We focus on the maximum clique problem, a classic NP-hard problem with important applications in network analysis, bioinformatics, and computational chemistry. By training a machine learning classification model on basic problem characteristics such as the number of edges in the graph, or annealing parameters, such as the D-Wave’s chain strength, we are able to rank certain features in the order of their contribution to the solution hardness, and present a simple decision tree which allows to predict whether a problem will be solvable to optimality with the D-Wave 2000Q. We extend these results by training a machine learning regression model that predicts the clique size found by D-Wave.


Sign in / Sign up

Export Citation Format

Share Document