Galaxy Evolution and Semi-analytic Models

2021 ◽  
pp. 35-51
2009 ◽  
Vol 5 (S267) ◽  
pp. 421-428
Author(s):  
Philip F. Hopkins

AbstractRecent observations of tight correlations between supermassive black hole masses and the properties of their host galaxies demonstrate that black holes and bulges are co-eval and have motivated theoretical models in which feedback from AGN activity regulates the black hole and host galaxy evolution. Combining simulations, analytic models, and recent observations, answers to a number of questions are starting to take shape: how do AGN get triggered? How long do they live? What are typical light curves and what sets them? Is feedback necessary and/or sufficient to regulate BH growth? What effects does that feedback have on the host galaxy? On the host halo? All of this also highlights questions that remain wide open: how does gas get from a few pc to the AGN? What are the actual microphysical mechanisms of feedback? What is the tradeoff between stellar and AGN feedback? And, if there are different “modes” of feedback, where/when are each important?


2019 ◽  
Vol 15 (S341) ◽  
pp. 119-123
Author(s):  
Dian Triani ◽  
Darren Croton ◽  
Manodeep Sinha

AbstractWe build a theoretical picture of how the light from galaxies evolves across cosmic time. In particular, we predict the evolution of the galaxy spectral energy distribution (SED) by carefully integrating the star formation and metal enrichment histories of semi-analytic model (SAM) galaxies and combining these with stellar population synthesis models which we call mentari. Our SAM combines prescriptions to model the interplay between gas accretion, star formation, feedback process, and chemical enrichment in galaxy evolution. From this, the SED of any simulated galaxy at any point in its history can be constructed and compared with telescope data to reverse engineer the various physical processes that may have led to a particular set of observations. The synthetic SEDs of millions of simulated galaxies from mentari can cover wavelengths from the far UV to infrared, and thus can tell a near complete story of the history of galaxy evolution.


2014 ◽  
Vol 10 (S313) ◽  
pp. 271-276
Author(s):  
Tamela Maciel ◽  
Paul Alexander

AbstractThere is mounting evidence that mechanical kinetic-mode AGN feedback is important in galaxy evolution, and in order to quantify this feedback, detailed models of radio source evolution are required. Self-similar analytic models exist for large powerful radio sources but the evolution of young precursor radio sources is not yet fully understood. In this talk we present a versatile dynamical and radiative model for young source evolution on sub-kiloparsec scales, which extends existing self-similar models into a more complete radio source evolutionary model. This semi-analytic model is successful in reproducing the strong spectral aging observed in compact symmetric objects.


2016 ◽  
Vol 11 (S321) ◽  
pp. 53-60
Author(s):  
Romeel Davé

AbstractGalaxies are born and grow within a cosmic ecosystem, in which they receive material from surrounding intergalactic gas via gravitationally-driven inflows and expel material via powerful galactic outflows. These processes, collectively referred to as the baryon cycle, are increasingly believed to govern galaxy growth over cosmic time. I discuss new insights on the baryon cycle using analytic models and hydrodynamical simulations of galaxy evolution, particularly emphasizing how galaxy outskirts are the prime locale within which to observe these processes in action by examining observational tracers such as rest-ultraviolet absorption lines and the neutral and molecular gas content of galaxies.


2020 ◽  
Vol 640 ◽  
pp. A59
Author(s):  
Laila Linke ◽  
Patrick Simon ◽  
Peter Schneider ◽  
Thomas Erben ◽  
Daniel J. Farrow ◽  
...  

Context. Several semi-analytic models (SAMs) try to explain how galaxies form, evolve, and interact inside the dark matter large-scale structure. These SAMs can be tested by comparing their predictions for galaxy–galaxy–galaxy lensing (G3L), which is weak gravitational lensing around galaxy pairs, with observations. Aims. We evaluate the SAMs by Henriques et al. (2015, MNRAS, 451, 2663, hereafter H15) and by Lagos et al. (2012, MNRAS, 426, 2142, hereafter L12), which were implemented in the Millennium Run, by comparing their predictions for G3L to observations at smaller scales than previous studies and also for pairs of lens galaxies from different populations. Methods. We compared the G3L signal predicted by the SAMs to measurements in the overlap of the Galaxy And Mass Assembly survey (GAMA), the Kilo-Degree Survey (KiDS), and the VISTA Kilo-degree Infrared Galaxy survey (VIKING) by splitting lens galaxies into two colour and five stellar-mass samples. Using an improved G3L estimator, we measured the three-point correlation of the matter distribution with “mixed lens pairs” with galaxies from different samples, and with “unmixed lens pairs” with galaxies from the same sample. Results. Predictions by the H15 SAM for the G3L signal agree with the observations for all colour-selected samples and all but one stellar-mass-selected sample with 95% confidence. Deviations occur for lenses with stellar masses below 9.5 h−2 M⊙ at scales below 0.2 h−1 Mpc. Predictions by the L12 SAM for stellar-mass selected samples and red galaxies are significantly higher than observed, while the predicted signal for blue galaxy pairs is too low. Conclusions. The L12 SAM predicts more pairs of low stellar mass and red galaxies than the H15 SAM and the observations, as well as fewer pairs of blue galaxies. This difference increases towards the centre of the galaxies’ host halos. Likely explanations are different treatments of environmental effects by the SAMs and different models of the initial mass function. We conclude that G3L provides a stringent test for models of galaxy formation and evolution.


2012 ◽  
Vol 428 (3) ◽  
pp. 2001-2016 ◽  
Author(s):  
Simon J. Mutch ◽  
Gregory B. Poole ◽  
Darren J. Croton

2020 ◽  
Vol 638 ◽  
pp. A53
Author(s):  
Nastaran Fazeli ◽  
Gerold Busch ◽  
Andreas Eckart ◽  
Françoise Combes ◽  
Persis Misquitta ◽  
...  

Gas inflow processes in the vicinity of galactic nuclei play a crucial role in galaxy evolution and supermassive black hole growth. Exploring the central kiloparsec of galaxies is essential to shed more light on this subject. We present near-infrared H- and K-band results of the nuclear region of the nearby galaxy NGC 1326, observed with the integral-field spectrograph SINFONI mounted on the Very Large Telescope. The field of view covers 9″ × 9″ (650 × 650 pc2). Our work is concentrated on excitation conditions, morphology, and stellar content. The nucleus of NGC 1326 was classified as a LINER, however in our data we observed an absence of ionised gas emission in the central r ∼ 3″. We studied the morphology by analysing the distribution of ionised and molecular gas, and thereby detected an elliptically shaped, circum-nuclear star-forming ring at a mean radius of 300 pc. We estimate the starburst regions in the ring to be young with dominating ages of < 10 Myr. The molecular gas distribution also reveals an elongated east to west central structure about 3″ in radius, where gas is excited by slow or mild shock mechanisms. We calculate the ionised gas mass of 8 × 105 M⊙ completely concentrated in the nuclear ring and the warm molecular gas mass of 187 M⊙, from which half is concentrated in the ring and the other half in the elongated central structure. The stellar velocity fields show pure rotation in the plane of the galaxy. The gas velocity fields show similar rotation in the ring, but in the central elongated H2 structure they show much higher amplitudes and indications of further deviation from the stellar rotation in the central 1″ aperture. We suggest that the central 6″ elongated H2 structure might be a fast-rotating central disc. The CO(3–2) emission observations with the Atacama Large Millimeter/submillimeter Array reveal a central 1″ torus. In the central 1″ of the H2 velocity field and residual maps, we find indications for a further decoupled structure closer to a nuclear disc, which could be identified with the torus surrounding the supermassive black hole.


2002 ◽  
Vol 4 ◽  
pp. 375-375
Author(s):  
T. T. Takeuchi ◽  
T. T. Ishii ◽  
T. Totani

Sign in / Sign up

Export Citation Format

Share Document