18β-Glycyrrhetinic Acid Inhibits TGF-β-Induced Epithelial-to-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma by Targeting STAT3

Author(s):  
Mo Jie ◽  
Zhao-Qi Zhang ◽  
Ning Deng ◽  
Qiu-Meng Liu ◽  
Chao Wang ◽  
...  

18[Formula: see text]-glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicinal herb Glycyrrhizae radix et rhizoma. We previously demonstrated that GA inhibited tumor growth in hepatocellular carcinoma (HCC). However, the effect of GA on transforming growth factor-[Formula: see text] (TGF-[Formula: see text]-induced epithelial-mesenchymal transition (EMT) and metastasis were still unclear. In this study, in vitro transwell assays and immunofluorescence (IF) demonstrated that GA inhibited TGF-[Formula: see text]-induced migration, invasion and EMT of HCC cells. However, it had little effect on the inhibition of proliferation by TGF-[Formula: see text]. Moreover, we confirmed that GA suppressed the metastasis of HCC cells in vivousing an ectopic lung metastasis model. Furthermore, we found that GA inhibited TGF-[Formula: see text]-induced EMT mainly by reducing the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which played an essential role in TGF-[Formula: see text]-induced EMT and cell mobility. Mechanistically, GA inhibited the phosphorylation of STAT3 by increasing the expression of Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 (SHP1 and SHP2). Therefore, we concluded that GA inhibited TGF-[Formula: see text]-induced EMT and metastasis via the SHP1&SHP2/STAT3/Snail pathway. Our data provide an attractive therapeutic target for future multimodal management of HCC.

2021 ◽  
Vol 22 (11) ◽  
pp. 5543
Author(s):  
Jitka Soukupova ◽  
Andrea Malfettone ◽  
Esther Bertran ◽  
María Isabel Hernández-Alvarez ◽  
Irene Peñuelas-Haro ◽  
...  

(1) Background: The transforming growth factor (TGF)-β plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-β expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-β induced suppressor effects, responding to this cytokine undergoing epithelial–mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-β in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-β when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-β in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


2020 ◽  
Vol 117 (9) ◽  
pp. 4770-4780 ◽  
Author(s):  
Hao Jiang ◽  
Hui-Jun Cao ◽  
Ning Ma ◽  
Wen-Dai Bao ◽  
Jing-Jing Wang ◽  
...  

Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial–mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Wenbiao Chen ◽  
Donge Tang ◽  
Dongxin Tang ◽  
Yong Dai

Abstract Inactivation of tumor suppressor gene played critical roles in the development and progression of human hepatocellular carcinoma (HCC). Zic family member 4 (ZIC4) is transcription factor and plays an important role in the developmental process. However, the expression and biological role of ZIC4 in HCC is poorly understood. Here, bioinformatics analysis based on The Cancer Genome Atlas (TCGA) database revealed an aberrant hypermethylation of ZIC4 in HCC. ZIC4 is frequently hypermethylated in promoter region and down expressed in HCC cells and tissues. Functionally, ZIC4 inhibition facilitated the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Conversely, ZIC4 overexpression reduced proliferation and invasiveness of HCC cells. In addition, ZIC4 inhibition rescued the antitumor effect induced by enhancer of zeste homolog 2 (EZH2) knockdown or EZH2 inhibitor. Mechanistically, EZH2 knockdown or EZH2 inhibitor reduced the enrichment of EZH2 and H3K27me3 in ZIC4 promoter region and leading to the upregulation of ZIC4. Altogether, these data indicate that epigenetic silencing of ZIC4 by EZH2 mediated H3K27me3 is an important mechanism in HCC and provide a new therapeutic target for the treatment of hepatocellular carcinoma disease.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Qi Su ◽  
Mengying Fan ◽  
Jingjing Wang ◽  
Asmat Ullah ◽  
Mohsin Ahmad Ghauri ◽  
...  

AbstractEpithelial–mesenchymal transition (EMT) plays a crucial role in hepatocellular carcinoma (HCC) progression. Hypoxia and excessive transforming growth factor-β (TGF-β) have been identified as inducers and target for EMT in HCC. Here, we show hypoxia inducible factor-1α (HIF-1α) and TGF-β form a feed-forward loop to induce EMT in HCC cells. Further mechanistic study indicates under both hypoxia and TGF-β stimulation, Smad and PI3K-AKT pathways are activated. We show sanguinarine, a natural benzophenanthridine alkaloid, impairs the proliferation of nine kinds of HCC cell lines and the colony formation of HCC cells. In hypoxic and TGF-β cell models, sanguinarine inhibits HIF-1α signaling and the expression of EMT markers, translocation of Snail and activation of both Smad and PI3K-AKT pathways. Sanguinarine could also inhibit TGF-β-induced cell migration in HCC cells. In vivo studies reveal that the administration of sanguinarine inhibits tumor growth and HIF-1α signaling, inhibits the expression changes of EMT markers as well as Smad and PI3K-AKT pathway proteins. Our findings suggest that sanguinarine is a promising candidate targeting HIF-1α/TGF-β signaling to improve the treatment for HCC patients.


Author(s):  
Honglei Cui ◽  
Danfeng Guo ◽  
Xiaodan Zhang ◽  
Yaohua Zhu ◽  
Zhihui Wang ◽  
...  

β-enolase (ENO3) is a metalloenzyme that functions during glycolysis and has been revealed ectopic expression in different cancers. However, the function and underlying modulatory mechanisms of ENO3 in hepatocellular carcinoma (HCC) are still elusive. Here, we discovered that ENO3 was remarkably down-regulated in human HCC tissue in contrast to those in noncancerous tissue. Moreover, low expression of ENO3 was related to the poor prognosis of HCC patients. Overexpression of ENO3 suppressed proliferative, migratory, and invasive abilities of HCC cells both in vitro and in vivo, whereas knocking down ENO3 led to the opposite effect. In addition, we revealed that ENO3 repressed the epithelial-mesenchymal transition (EMT) process with its biomarker variations. Mechanistic research unveiled that ENO3 suppressed the Wnt/β-catenin signal, which subsequently modulated the transcription of its target genes associated with the proliferation and metastasis capacity of HCC cells. Taken together, our study uncovered that ENO3 acted as a tumor inhibitor in HCC development and implied ENO3 as a promising candidate for HCC treatment.


2020 ◽  
Vol 52 (5) ◽  
pp. 554-562
Author(s):  
Yuke Zhang ◽  
Kun Shi ◽  
Hang Liu ◽  
Wei Chen ◽  
Yunhai Luo ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is one of the most lethal cancers in the world. MicroRNAs play a pivotal role in the progression of various cancers. To date, very little attention has been paid to miR-4458. Therefore, the aim of our study was to explore the function and underlying molecular mechanism of miR-4458 in HCC. We found that the expression of miR-4458 was reduced in HCC tissues and cell lines. Forced overexpression of miR-4458 inhibited the migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells, while downregulation of miR-4458 promoted the aggressive phenotype. Furthermore, transforming growth factor beta receptor 1 (TGFBR1), the modulator of the TGF-β signaling pathway, was verified to be a novel target gene of miR-4458 by dual-luciferase reporter gene assay. Upregulated miR-4458 dramatically abolished TGFBR1 and p-Smad2/3 expression, thus blocking the TGF-β signaling pathway. Moreover, restoration of TGFBR1 partially rescued the miR-4458-mediated suppressive effect on the migration, invasion, and EMT and reactivated the TGF-β signaling pathway in HCC cells. In summary, our findings first demonstrated a mechanism of miR-4458 in HCC cell migration, invasion, and EMT by regulating the TGF-β signaling pathway via directly targeting TGFBR1.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 20 ◽  
Author(s):  
Li-Fang Chou ◽  
Chi-Yuan Chen ◽  
Wan-Hua Yang ◽  
Chin-Chuan Chen ◽  
Junn-Liang Chang ◽  
...  

Daphne genkwa, a Chinese medicinal herb, is used frequently in Southeast Asian countries to treat diseases; the flavonoid hydroxygenkwanin (HGK) is extracted from its flower buds. The bioactivity of HGK, particularly as an anti-liver cancer agent, has not been explored. In this study, human hepatocellular carcinoma (HCC) cell lines and an animal xenograft model were employed to investigate both the activity of HGK against liver cancer and its cellular signaling mechanisms. HCC cells treated with HGK were subjected to cell function assays. Whole transcriptome sequencing was used to identify genes whose expression was influenced by HGK, and the flavonoid’s cancer suppression mechanisms were further investigated through gain- and loss-of-function assays. Finally, in vitro findings were tested in a mouse xenograft model. The data showed that HGK induced the expression of the microRNA miR-320a, which in turn inhibited the expression of the transcription factor ‘forkhead box protein M1’ (FOXM1) and downstream FOXM1-regulated proteins related to epithelial–mesenchymal transition, thereby leading to the suppression of liver cancer cell growth and invasion. Significant inhibition of tumor growth was also observed in HGK-treated mice. Hence, the present study demonstrated the activity of HGK against liver cancer and validated its potential use as a therapeutic agent.


2020 ◽  
Vol 401 (8) ◽  
pp. 985-994
Author(s):  
Haicun Wang ◽  
Yang Cao ◽  
Kaiwen Hu ◽  
Quanwang Li ◽  
Yufei Yang ◽  
...  

AbstractIncreasing evidences suggest that insufficient radiofrequency ablation (IRFA) can paradoxically promote tumor invasion and metastatic processes, whereas the effects of moderate hyperthermia on cancer progression are not well illustrated. Our study found that IRFA can increase the in vitro migration, invasion, and epithelial–mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) cells via induction of Snail, a master regulator of EMT events. Among measured miRNAs, IRFA can decrease the expression of miR-148a-5p in HCC cells. Whereas overexpression of miR-148a-5p can reverse IRFA-induced migration of HCC cells and upregulation of Snail, mechanistically overexpression of miR-148a-5p can directly target and decrease the expression of protein kinase ATM (ataxia telangiectasia mutated), which can increase protein stability of Snail. Collectively, our data suggest that IRFA can regulate the miR-148a-5p/ATM/Snail axis to trigger migration of HCC cells.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bingqing Chen ◽  
Zhibin Liao ◽  
Yongqiang Qi ◽  
Hongwei Zhang ◽  
Chen Su ◽  
...  

MicroRNAs (miRNAs) have been reported to play critical roles in the pathological development of hepatocellular carcinoma (HCC), one of the most common cancers in the world. Our study aims to explore the expression, function and mechanism of miR-631 in HCC. Our findings are that expression of miR-631 is significantly down-regulated in HCC tissue compared with that in adjacent non-cancerous tissue, and low expression of miR-631 in HCC tissue is associated with cirrhosis, multiple tumors, incomplete tumor encapsulation, poor tumor differentiation, and high TNM stage. Our test results showed that miR-631 could inhibit migration, invasion, epithelial–mesenchymal transition (EMT) and intrahepatic metastasis of HCC. Receptor-type protein tyrosine phosphatase epsilon (PTPRE) as a downstream target of miR-631 could promote migration, invasion and EMT of HCC cells. Besides, the expression of PTPRE had a negative correlation with the expression of miR-631 both in vivo and in vitro, and increasing expression of PTPRE could reverse inhibitory effects of miR-631 in HCC cells. In sum, our study first demonstrated that miR-631 targeted PTPRE to inhibit intrahepatic metastasis in HCC. We gain insights from these findings into the mechanism of miRNAs regulation in HCC metastasis and further introduce a novel therapeutic target for HCC treatment.


2021 ◽  
Author(s):  
Zhanjun Chen ◽  
Leyang Xiang ◽  
Huohui Ou ◽  
Yinghao Fang ◽  
Yuyan Xu ◽  
...  

Abstract Emerging evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the metastasis and recurrence of hepatocellular carcinoma (HCC).Kinds of lncRNAs were found to be involved in regulating epithelial-mesenchymal transition (EMT) or stem-like traits in human cancers, however, the molecular mechanism and signaling pathways targeting EMT and stemness remains largely unknown. Previously, we found that linc00261 was down-regulated in HCC and associated with multiple worse clinic pathological parameters and poor prognosis. Here, we show that linc00261 was down-regulated in TGF-β1 stimulated cells, and forced expression of linc00261 attenuated EMT and stem-like traits in HCC.Linc00261 also inhibited the tumor sphere forming in vitro and decreased the tumorigenicity in vivo. Furthermore, we revealed that linc00261 suppressed the expression and phosphorylation of SMAD3 (p-SMAD3), which is a core transcriptional modulator in TGF-β1 signaling mediated EMT and the acquisition of stemness traits. A negative correlation between linc00261 and p-SMAD3 was determined in HCC samples.Conclusion: Our study revealed that linc00261suppressed EMT and stem-like traits of HCC cells by inhibiting TGF-β1/SMAD3 signaling.


Sign in / Sign up

Export Citation Format

Share Document