Abundant exact solutions to the strain wave equation in micro-structured solids

2021 ◽  
pp. 2150439
Author(s):  
Karmina K. Ali ◽  
R. Yilmazer ◽  
H. Bulut ◽  
Tolga Aktürk ◽  
M. S. Osman

In this study, the strain wave equation in micro-structured solids which take an important place in solid physics is presented for consideration. The generalized exponential rational function method is used for this purpose which is one of the most powerful methods of constructing abundantly distinct, exact solutions of nonlinear partial differential equations. In micro-structured solids, wave propagation is based on the structure of the strain wave equation. As a consequence, we successfully received many different exact solutions, including non-topological solutions, periodic singular solutions, topological solutions, singular solutions, like periodic lump solutions. Furthermore, in order to better understand their physical interpretation, 2D, 3D, and counter plots are graphed for each of the solutions acquired.

2006 ◽  
Vol 61 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Zonghang Yang

Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutions for the second were just N-soliton solutions. In this paper we present kinds of new exact solutions by using the extended tanh-function method.


2021 ◽  
Vol 35 (13) ◽  
pp. 2150168
Author(s):  
Adel Darwish ◽  
Aly R. Seadawy ◽  
Hamdy M. Ahmed ◽  
A. L. Elbably ◽  
Mohammed F. Shehab ◽  
...  

In this paper, we use the improved modified extended tanh-function method to obtain exact solutions for the nonlinear longitudinal wave equation in magneto-electro-elastic circular rod. With the aid of this method, we get many exact solutions like bright and singular solitons, rational, singular periodic, hyperbolic, Jacobi elliptic function and exponential solutions. Moreover, the two-dimensional and the three-dimensional graphs of some solutions are plotted for knowing the physical interpretation.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Z. Ayati ◽  
K. Hosseini ◽  
M. Mirzazadeh

AbstractThe aim of this paper is to obtain the exact solutions of the strain wave equation applied for illustrating wave propagation in microstructured solids. The effective Kudryashov and functional variable methods along with the symbolic computation system have been used to accomplish the purpose.


2019 ◽  
Vol 35 (01) ◽  
pp. 1950345 ◽  
Author(s):  
Aly R. Seadawy ◽  
K. El-Rashidy

The extension of exponential rational function method is obtained to construct a series of exact solutions for higher-dimensional Broer–Kaup–Kupershmidt (BKK) dynamical system. New and general solutions are found. The solutions reported in this work are kink solutions, anti-kink solutions and bright solutions. They are expressed in terms of rational exponential functions. A confrontation of our results with the well-known results are done and it comes from this study that the solutions obtained here are new. The mathematical method applied to search for our solutions can be used for other nonlinear partial differential equations. The graphics of the obtained solutions in this paper are shown.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Şamil Akçaği ◽  
Tuğba Aydemir

AbstractIn this paper, firstly, we give a connection between well known and commonly used methods called the $\left( {{{G'} \over G}} \right)$ -expansion method and the modified extended tanh method which are often used for finding exact solutions of nonlinear partial differential equations (NPDEs). We demonstrate that giving a convenient transformation and formula, all of the solutions obtained by using the $\left( {{{G'} \over G}} \right)$ - expansion method can be converted the solutions obtained by using the modified extended tanh method. Secondly, contrary to the assertion in some papers, the $\left( {{{G'} \over G}} \right)$-expansion method gives neither all of the solutions obtained by using the other method nor new solutions for NPDEs. Namely, while the modified extended tanh method gives more solutions in a straightforward, concise and elegant manner without reproducing a lot of different forms of the same solution. On the other hand, the $\left( {{{G'} \over G}} \right)$-expansion method provides less solutions in a rather cumbersome form. Lastly, we obtain new exact solutions for the Lonngren wave equation as an illustrative example by using these methods.


2016 ◽  
Vol 71 (2) ◽  
pp. 103-112 ◽  
Author(s):  
E.M.E. Zayed ◽  
Abdul-Ghani Al-Nowehy

AbstractThe modified simple equation method, the exp-function method, and the method of soliton ansatz for solving nonlinear partial differential equations are presented. Based on these three different methods, we obtain the exact solutions and the bright–dark soliton solutions with parameters of the long-short wave resonance equations which describe the resonance interaction between the long wave and the short wave. When these parameters take special values, the solitary wave solutions are derived from the exact solutions. We compare the results obtained using the three methods. Also, a comparison between our results and the well-known results is given.


2018 ◽  
Vol 32 (24) ◽  
pp. 1850282 ◽  
Author(s):  
Yong-Li Sun ◽  
Wen-Xiu Ma ◽  
Jian-Ping Yu ◽  
Chaudry Masood Khalique

In this research, we study the exact solutions of the Rosenau–Hyman equation, the coupled KdV system and the Burgers–Huxley equation using modified transformed rational function method. In this paper, the simplest equation is the Bernoulli equation. We are not only obtain the exact solutions of the aforementioned equations and system but also give some geometric descriptions of obtained solutions. All can be illustrated vividly by the given graphs.


Sign in / Sign up

Export Citation Format

Share Document