Nonlinear optical single crystals for terahertz generation and detection

Author(s):  
Sudha Yadav ◽  
Manju Kumari ◽  
Debabrata Nayak ◽  
Girija Moona ◽  
Rina Sharma ◽  
...  

Nonlinear optical (NLO) single crystals with high quality are the pillars for the development of new devices that fulfil the demands of society. Nowadays, NLO single crystals are very attractive for the photonic applications particularly for terahertz (THz) photonics. The reason for their popularity is that these crystals can produce very powerful and ultra wideband THz waves due to their high nonlinear susceptibility. In this review paper, we deal with the challenges and progresses in the evolution of NLO single crystals for THz wave generation and detection. Here, we review the single crystal growth that how and by which method single crystal is grown. We summarize the structures, intermolecular and intramolecular interactions, their properties and how they generate and detect the THz waves. Widely used single crystals at present are DAST, BNA, OH1, amino acid-based single crystals, etc.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


Author(s):  
Phan Gia Le ◽  
Huyen Tran Tran ◽  
Jong-Sook Lee ◽  
John G. Fisher ◽  
Hwang-Pill Kim ◽  
...  

AbstractCeramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 system exhibits a morphotropic phase boundary at x = 0.2–0.3, leading to high values of inverse piezoelectric constant d*33, which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1−xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature Ts and temperature of maximum relative permittivity Tmax, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior.


CrystEngComm ◽  
2015 ◽  
Vol 17 (13) ◽  
pp. 2682-2689 ◽  
Author(s):  
Pascal Schouwink ◽  
Adrien Ramel ◽  
Enrico Giannini ◽  
Radovan Černý

Single crystals of mixed-metal perovskite-type borohydride KCa(BH4)3 are prepared by using an easily generalized flux melting procedure based on eutectic borohydride systems.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2357 ◽  
Author(s):  
Le ◽  
Fisher ◽  
Moon

The (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 (NBT-100xST) system is a possible lead-free candidate for actuator applications because of its excellent strain vs. electric field behaviour. Use of single crystals instead of polycrystalline ceramics may lead to further improvement in piezoelectric properties but work on single crystal growth in this system is limited. In particular, the effect of composition on single crystal growth has yet to be studied. In this work, single crystals of (NBT-100xST) with x = 0.00, 0.05, 0.10 and 0.20 were grown using the method of Solid State Crystal Growth. [001]-oriented SrTiO3 single crystal seeds were embedded in (NBT-100xST) ceramic powder, which was then pressed to form pellets and sintered at 1200 °C for 5 min–50 h. Single crystal growth rate, matrix grain growth rate and sample microstructure were examined using scanning and transmission electron microscopy. The results indicate that the highest single crystal growth rate was obtained at x = 0.20. The mixed control theory of grain growth is used to explain the single crystal and matrix grain growth behaviour.


RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22350-22358 ◽  
Author(s):  
P. Nagapandiselvi ◽  
C. Baby ◽  
R. Gopalakrishnan

The synthesis, growth and structure of a novel organic third order nonlinear optical (NLO) crystal namely, N,N,N′,N′-tetramethylethylenediammonium-bis(4-nitrophenolate) (TMEDA4NP) is presented.


1991 ◽  
Vol 251 ◽  
Author(s):  
T. Miyatake ◽  
T. Takata ◽  
K. Yamaguchi ◽  
K. Takamuku ◽  
N. Koshizuka ◽  
...  

ABSTRACTWe investigate the crystal growth of YBa2Cu4O8 (124) and Y2Ba4Cu7O15 (247) in Al2O3 crucibles at an oxygen partial pressure of 20MPa employing an O2- HIP apparatus in a mixed gas environment of Ar-20%O2. Various melts compositions, rich in Ba and Cu, are explored to optimize crystal growth of 124. Large 124 single crystals up to a size of 1×0.5×0.05mm3 are obtained from compositions with about 65˜67%CuO. 247 single crystals having a maximum size of 3×1.5×0.05mm3 are grown from the same composition of melts. 124 crystals exhibit superconductivity at 75K. 247 crystals show Tc of 20K.


Sign in / Sign up

Export Citation Format

Share Document