The annihilators comaximal graph

Author(s):  
Saeed Rajaee

In this paper, we introduce and study a new kind of graph related to a unitary module [Formula: see text] on a commutative ring [Formula: see text] with identity, namely the annihilators comaximal graph of submodules of [Formula: see text], denoted by [Formula: see text]. The (undirected) graph [Formula: see text] is with vertices of all non-trivial submodules of [Formula: see text] and two vertices [Formula: see text] of [Formula: see text] are adjacent if and only if their annihilators are comaximal ideals of [Formula: see text], i.e. [Formula: see text]. The main purpose of this paper is to investigate the interplay between the graph-theoretic properties of [Formula: see text] and the module-theoretic properties of [Formula: see text]. We study the annihilators comaximal graph [Formula: see text] in terms of the powers of the decomposition of [Formula: see text] to product distinct prime numbers in some special cases.

Author(s):  
S. Visweswaran

The rings considered in this paper are commutative with identity which are not integral domains. Let [Formula: see text] be a ring. Let us denote the set of all annihilating ideals of [Formula: see text] by [Formula: see text] and [Formula: see text] by [Formula: see text]. With [Formula: see text], we associate an undirected graph, denoted by [Formula: see text], whose vertex set is [Formula: see text] and distinct vertices [Formula: see text] and [Formula: see text] are adjacent in this graph if and only if [Formula: see text] and [Formula: see text]. The aim of this paper is to study the interplay between the graph-theoretic properties of [Formula: see text] and the ring-theoretic properties of [Formula: see text].


2019 ◽  
Vol 11 (01) ◽  
pp. 1950012
Author(s):  
S. Visweswaran ◽  
Anirudhdha Parmar

Let [Formula: see text] be a commutative ring with identity which is not an integral domain. Let [Formula: see text] denote the set of all annihilating ideals of [Formula: see text] and let us denote [Formula: see text] by [Formula: see text]. For an ideal [Formula: see text] of [Formula: see text], we denote the annihilator of [Formula: see text] in [Formula: see text] by [Formula: see text]. That is, [Formula: see text]. In this note, for any ring [Formula: see text] with [Formula: see text], we associate an undirected graph denoted by [Formula: see text] whose vertex set is [Formula: see text] and distinct vertices [Formula: see text] are joined by an edge if and only if either [Formula: see text] or [Formula: see text]. Let [Formula: see text] be a reduced ring. The aim of this paper is to study the interplay between the graph-theoretic properties of [Formula: see text] and the ring-theoretic properties of [Formula: see text].


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050040 ◽  
Author(s):  
Sriparna Chattopadhyay ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a given finite group [Formula: see text] is the simple undirected graph whose vertices are the elements of [Formula: see text], in which two distinct vertices are adjacent if and only if one of them can be obtained as an integral power of the other. The vertex connectivity [Formula: see text] of [Formula: see text] is the minimum number of vertices which need to be removed from [Formula: see text] so that the induced subgraph of [Formula: see text] on the remaining vertices is disconnected or has only one vertex. For a positive integer [Formula: see text], let [Formula: see text] be the cyclic group of order [Formula: see text]. Suppose that the prime power decomposition of [Formula: see text] is given by [Formula: see text], where [Formula: see text], [Formula: see text] are positive integers and [Formula: see text] are prime numbers with [Formula: see text]. The vertex connectivity [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [Panda and Krishna, On connectedness of power graphs of finite groups, J. Algebra Appl. 17(10) (2018) 1850184, 20 pp, Chattopadhyay, Patra and Sahoo, Vertex connectivity of the power graph of a finite cyclic group, to appear in Discr. Appl. Math., https://doi.org/10.1016/j.dam.2018.06.001]. In this paper, for [Formula: see text], we give a new upper bound for [Formula: see text] and determine [Formula: see text] when [Formula: see text]. We also determine [Formula: see text] when [Formula: see text] is a product of distinct prime numbers.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1529 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal Ahmad Ganie ◽  
Yilun Shang

Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian, D Q ( G ) be the distance signless Laplacian, and T r ( G ) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by D α ( G ) the generalized distance matrix, i.e., D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue.


2019 ◽  
Vol 26 (03) ◽  
pp. 519-528
Author(s):  
T. Asir ◽  
K. Mano

Let R be a commutative ring with non-zero identity and I its proper ideal. The total graph of R with respect to I, denoted by T (ΓI (R)), is the undirected graph with all elements of R as vertices, and where distinct vertices x and y are adjacent if and only if [Formula: see text]. In this paper, some bounds for the genus of T(ΓI(R)) are obtained. We improve and generalize some results for the total graphs of commutative rings. In addition, we obtain an isomorphism relation between two ideal based total graphs.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250151 ◽  
Author(s):  
M. BAZIAR ◽  
E. MOMTAHAN ◽  
S. SAFAEEYAN

Let M be an R-module. We associate an undirected graph Γ(M) to M in which nonzero elements x and y of M are adjacent provided that xf(y) = 0 or yg(x) = 0 for some nonzero R-homomorphisms f, g ∈ Hom (M, R). We observe that over a commutative ring R, Γ(M) is connected and diam (Γ(M)) ≤ 3. Moreover, if Γ(M) contains a cycle, then gr (Γ(M)) ≤ 4. Furthermore if ∣Γ(M)∣ ≥ 1, then Γ(M) is finite if and only if M is finite. Also if Γ(M) = ∅, then any nonzero f ∈ Hom (M, R) is monic (the converse is true if R is a domain). For a nonfinitely generated projective module P we observe that Γ(P) is a complete graph. We prove that for a domain R the chromatic number and the clique number of Γ(M) are equal. When R is self-injective, we will also observe that the above adjacency defines a covariant functor between a subcategory of R-MOD and the Category of graphs.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950006 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
S. Anukumar Kathirvel

Let [Formula: see text] be a finite commutative ring with nonzero identity and [Formula: see text] be the set of all units of [Formula: see text] The graph [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] in which two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if there exists a unit element [Formula: see text] in [Formula: see text] such that [Formula: see text] is a unit in [Formula: see text] In this paper, we obtain degree of all vertices in [Formula: see text] and in turn provide a necessary and sufficient condition for [Formula: see text] to be Eulerian. Also, we give a necessary and sufficient condition for the complement [Formula: see text] to be Eulerian, Hamiltonian and planar.


Author(s):  
S. H. Payrovi ◽  
S. Babaei ◽  
E. Sengelen Sevim

Let [Formula: see text] be a commutative ring and [Formula: see text] be an [Formula: see text]-module. The compressed essential graph of [Formula: see text], denoted by [Formula: see text] is a simple undirected graph associated to [Formula: see text] whose vertices are classes of torsion elements of [Formula: see text] and two distinct classes [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal of [Formula: see text]. In this paper, we study diameter and girth of [Formula: see text] and we characterize all modules for which the compressed essential graph is connected. Moreover, it is proved that [Formula: see text], whenever [Formula: see text] is Noetherian and [Formula: see text] is a finitely generated multiplication module with [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document