Characteristic and photocatalytic performance of magnetic photocatalyst β-Bi2O3/MnxZn1−xFe2O4 synthesized by hydrothermal and calcination method

Author(s):  
Qiyuan Zhang ◽  
Yahan Yang ◽  
Yong Cheng ◽  
Longjun Xu ◽  
Chenglun Liu

A magnetic photocatalyst [Formula: see text]-Bi2O3/Mn[Formula: see text]Zn[Formula: see text]Fe2O4 (Bi2O3/MZF) was fabricated by hydrothermal and calcination method, and characterized by XRD, FTIR, XPS and SEM, BET and VSM. The photocatalytic efficiency was measured by the degradation experiment of Rhodamine B (RhB). The degradation rate of the optimum sample Bi2O3/MZF (10 wt.%) could reach 96.8% after 3 h under visible light, and was improved significantly compared with pure [Formula: see text]-Bi2O3 due to the larger pore size (11.76 nm) and specific surface area (17.87 m2 ⋅ g[Formula: see text]. Meanwhile, the Bi2O3/MZF (10 wt.%) could be recovered under the external magnetic field due to its high magnetization saturation (9.22 emu ⋅ g[Formula: see text]. After reusing three times, the Bi2O3/MZF could still maintain the excellent photocatalytic activity and structural stability.

2013 ◽  
Vol 827 ◽  
pp. 3-7
Author(s):  
Shun Jiang He ◽  
Xue Yan Du ◽  
Qiao Wang ◽  
Jing Xu

The photocatalytic activity of eosin-sensitized TiO2 nanoparticles on photocatalytic degradation rate (PDR) of methyl orange under sunlight irradiation was studied. The influential factors on the degradation, such as eosin concentration, TiO2 dosage, sensitization time and sensitization temperature were also investigated. The results show that: The performance of TiO2 nanoparticles for PDR of methyl orange has been improved obviously for eosin sensitizing. The PDR of methyl orange reached 45.28% under the conditions of eosin concentration of 20mg/L, TiO2 dosage of 0.5000g/L, sensitization time of 24h and sensitization temperature of 20°C.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 6114-6120 ◽  
Author(s):  
Junpeng Ren ◽  
Yongyong Zhu

Ag2O doped electrospun BiVO4 nanofibers with p–n junction heterogeneous structures show enhanced photocatalytic activity under visible light (photocatalytic efficiency: 98.47% within 100 min) and good cycling stability.


2015 ◽  
Vol 1118 ◽  
pp. 211-216
Author(s):  
Yuan Liang Ma ◽  
Xue Rong Zheng ◽  
Wei Liu ◽  
Hai Qin Li ◽  
Hui Ming Ji

Pure phase of Yb3+/Er3+ co-doped β-NaYF4 micron tubes with up-conversion fluorescence were synthesized by hydrothermal method at 180°C for 24 hours. For better utilization of sunlight and improving photocatalytic efficiency of organic dyes, TiO2 nanoparticles were modified by combining with β-NaYF4 micron tubes to form TiO2/NaYF4 composite. Three different combination methods were studied and the photocatalytic activities of the corresponding samples were tested by measuring the degradation rate of rhodamine aqueous solution under illumination of simulated sunlight. The composite that TiO2 nanoparticles were well dispersed on the surface of NaYF4 shows better photocatalytic activity than other composites and was near twice efficiency of pure TiO2 nanoparticles. The reason may be due to the high activity of heterostructure for TiO2/NaYF4 composite that will make it easy for sunlight absorption and photocatalytic degradation.


2012 ◽  
Vol 518-523 ◽  
pp. 732-735 ◽  
Author(s):  
Xi Qiang Li ◽  
Xiu Fang Zhang ◽  
Xiao Li Dong ◽  
Chun Ma ◽  
Xin Xin Zhang ◽  
...  

Porous BiVO4 film was fabricated by templating procedure with polystyrene (PS) balls as the template. Ag particles were loaded on the porous BiVO4 film by photoreduction technique. SEM revealed there were many pores in the film and Ag particles were successfully loaded on the porous BiVO4 film. XRD analysis indicated that the chemical state of Ag particles was metallic Ag. The experiment of photocatalytic degradation of phenol showed that the degradation rate on porous Ag/BiVO4 film was 4.74 times as much as that on the BiVO4 film. The enhanced photocatalytic performance was firstly attributed to the rapid transfer of the photogenerated electrons from BiVO4 to Ag, which could increase the charge carrier separation, limit their recombination, and enhance the photocatalytic efficiency. Furthermore, porosity of the photocatalyst may enhance diffusion process and decrease diffusion resistance of the reactants throughout the channels in the photocatalyst, and thus improves the surface reactions.


NANO ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. 1650129 ◽  
Author(s):  
Xinlin Liu ◽  
Yingying Qin ◽  
Mingjun Zhou ◽  
Yongsheng Yan

A unique CdS/Fe3O4/rGO composite photocatalyst is successfully synthesized by the microwave method. It displays promising photocatalytic activity towards the photo-degrading of tetracycline (TC) in aqueous solution, the degradation rate of TC is 69% with adding 0.1[Formula: see text]g CdS/Fe3O4/rGO photocatalyst into 20[Formula: see text]mg/L tetracycline for 2[Formula: see text]h under visible light irradiation. Furthermore, the mechanism was systematically investigated by active species trapping experiment. It can be known that [Formula: see text] the major active species in the photodegradation process and the possible process of charge transfer for CdS/Fe3O4/rGO was proposed based on the experimental results. The as-prepared samples were carefully evaluated by XRD, TEM, XPS, VSM, PL spectra, Raman spectrometer.


2014 ◽  
Vol 881-883 ◽  
pp. 533-539
Author(s):  
Zhi Feng Wang ◽  
Yan Hui Zhang ◽  
Hua Fang ◽  
Jian Zhong Wang ◽  
Bao Sen Sun

Impregnation method was used to prepare of graphene/TiO2composite. Its microstructure, phase and diffuse reflection properties were characterized by using of SEM, XRD and DRS. And the photocatalytic properties of graphene/TiO2composite changed with the reaction time, composite quantity added, X3B initial concentration and pH were investigated. The results show that the degradation degree of graphene/TiO2composite on X3B increases with reaction time increasing. Graphene/TiO2composite of GR3 has the best photocatalytic performance when the introduction of graphene was 0.4mg/g(TiO2). Degradation efficiency of GR3 on X3B increases with the quantity of GR3 added to the solution increasing. And the photocatalytic efficiency is the highest when GR3 is 0.15g. With increasing of X3B initial concentration, the solution degradation rate is decreased. And it is beneficial for graphene/TiO2composite to play its photocatalytic properties in the weak alkaline conditions.


NANO ◽  
2017 ◽  
Vol 12 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Longhai Feng ◽  
Lirong Kong ◽  
Zhenyuan Ji ◽  
Yi Wang ◽  
Xiaoping Shen ◽  
...  

An efficient N-doped reduced graphene oxide (N-RGO)/Ag3PO4 nanocomposite with enhanced photocatalytic activity has been prepared through a facile solution-based approach. Since N-RGO could offer more sites for the anchoring of Ag3PO4 nanoparticles, and effectively promote the charge carriers separation and transfer due to its high electrical conductivity, the photocatalytic activity of N-RGO/Ag3PO4 nanocomposite is much higher than bare Ag3PO4 and N-RGO in the degradation of phenol pollutant under simulated solar light irradiation. The mechanism for the photocatalytic process was also investigated. The excellent photocatalytic performance makes the N-RGO/Ag3PO4 nanocomposite a promising photocatalyst for organic pollutant treatment.


2015 ◽  
Vol 08 (06) ◽  
pp. 1550072 ◽  
Author(s):  
Ya-Juan Deng ◽  
Jian-Dong Wang ◽  
Jin-Ku Liu ◽  
Qin Tong ◽  
Jiang-Jie Wang ◽  
...  

The N - AZO / TiO 2 heterogeneous nanocomposite with core/shell structure revealed a better photocatalytic activity than the single N - AZO nanocrystals (NCs) even though it has a good photocatalytic effect. The recombination degree of photo-induced electrons and holes reduced significantly after molecular TiO 2 layer composited on the surface of N - AZO NCs. From the experiment of degrading rhodamine B solution (2 × 10-5 g/L) under solar light, the optimum photocatalytic efficiency was the N - AZO / TiO 2 composite prepared by idiopathic molecule-cladding (IMC) process and the best proportion of Zn / Ti was 2:1 in our research, which improved by 67% than pure N - AZO . Moreover, the N - AZO / TiO 2 composite prepared by IMC process achieved a molecular combination level between the two components, which not only can improve the immobility of composite structure, but also can make the photogenerated electrons and holes transport easier.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Abdul Rahman ◽  
M. T. M. Ayob ◽  
S. Radiman

ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document