On some punctured codes of ℤq-Simplex codes

Author(s):  
J. Prabu ◽  
J. Mahalakshmi ◽  
C. Durairajan ◽  
S. Santhakumar

In this paper, we have constructed some new codes from [Formula: see text]-Simplex code called unit [Formula: see text]-Simplex code. In particular, we find the parameters of these codes and have proved that it is a [Formula: see text] [Formula: see text]-linear code, where [Formula: see text] and [Formula: see text] is a smallest prime divisor of [Formula: see text]. When rank [Formula: see text] and [Formula: see text] is a prime power, we have given the weight distribution of unit [Formula: see text]-Simplex code. For the rank [Formula: see text] we obtain the partial weight distribution of unit [Formula: see text]-Simplex code when [Formula: see text] is a prime power. Further, we derive the weight distribution of unit [Formula: see text]-Simplex code for the rank [Formula: see text] [Formula: see text].

2015 ◽  
Vol 07 (03) ◽  
pp. 1550030
Author(s):  
C. Durairajan ◽  
J. Mahalakshmi ◽  
P. Chella Pandian

In this paper, we have defined ℤq-linear code and constructed some new codes. In particular, we have introduced the concept of ℤq-Simplex codes and proved that it is a [Formula: see text]-linear code for any integer q ≥ 2 and k ≥ 3 where p is the least order element in ℤq. We have given the weight distribution of ℤq-Simplex codes of dimension 2 when q is a prime power and when q is a product of distinct primes.


2020 ◽  
Vol 31 (4) ◽  
pp. 101
Author(s):  
Maha Majeed Ibrahim ◽  
Emad Bakr Al-Zangana

This paper is devoted to introduce the structure of the p-ary linear codes C(n,q) of points and lines of PG(n,q),q=p^h prime. When p=3, the linear code C(2,27) is given with its generator matrix and also, some of weight distributions are calculated.


2015 ◽  
Vol 91 (2) ◽  
pp. 345-350 ◽  
Author(s):  
JIAN GAO

AbstractLet $R=\mathbb{F}_{p}+u\mathbb{F}_{p}$, where $u^{2}=u$. A relation between the support weight distribution of a linear code $\mathscr{C}$ of type $p^{2k}$ over $R$ and its dual code $\mathscr{C}^{\bot }$ is established.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The length function <inline-formula><tex-math id="M3">\begin{document}$ \ell_q(r,R) $\end{document}</tex-math></inline-formula> is the smallest length of a <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary linear code with codimension (redundancy) <inline-formula><tex-math id="M5">\begin{document}$ r $\end{document}</tex-math></inline-formula> and covering radius <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula>. In this work, new upper bounds on <inline-formula><tex-math id="M7">\begin{document}$ \ell_q(tR+1,R) $\end{document}</tex-math></inline-formula> are obtained in the following forms:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &amp;(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} &amp;(b)\; \ell_q(r,R)&lt; 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In the literature, for <inline-formula><tex-math id="M8">\begin{document}$ q = (q')^R $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ q' $\end{document}</tex-math></inline-formula> a prime power, smaller upper bounds are known; however, when <inline-formula><tex-math id="M10">\begin{document}$ q $\end{document}</tex-math></inline-formula> is an arbitrary prime power, the bounds of this paper are better than the known ones.</p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M11">\begin{document}$ t = 1 $\end{document}</tex-math></inline-formula>, we use a one-to-one correspondence between <inline-formula><tex-math id="M12">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes and <inline-formula><tex-math id="M13">\begin{document}$ (R-1) $\end{document}</tex-math></inline-formula>-saturating <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>-sets in the projective space <inline-formula><tex-math id="M15">\begin{document}$ \mathrm{PG}(R,q) $\end{document}</tex-math></inline-formula>. A new construction of such saturating sets providing sets of small size is proposed. Then the <inline-formula><tex-math id="M16">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "<inline-formula><tex-math id="M17">\begin{document}$ q^m $\end{document}</tex-math></inline-formula>-concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension <inline-formula><tex-math id="M18">\begin{document}$ r = tR+1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}$ t\ge1 $\end{document}</tex-math></inline-formula>.</p>


2015 ◽  
Vol 14 (08) ◽  
pp. 1550128 ◽  
Author(s):  
M. Borges-Quintana ◽  
M. A. Borges-Trenard ◽  
I. Márquez-Corbella ◽  
E. Martínez-Moro

In this paper we use the Gröbner representation of a binary linear code [Formula: see text] to give efficient algorithms for computing the whole set of coset leaders, denoted by [Formula: see text] and the set of leader codewords, denoted by [Formula: see text]. The first algorithm could be adapted to provide not only the Newton and the covering radius of [Formula: see text] but also to determine the coset leader weight distribution. Moreover, providing the set of leader codewords we have a test-set for decoding by a gradient-like decoding algorithm. Another contribution of this article is the relation established between zero neighbors and leader codewords.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Austin Allen ◽  
Keller Blackwell ◽  
Olivia Fiol ◽  
Rutuja Kshirsagar ◽  
Bethany Matsick ◽  
...  

We define a family of codes called twisted Hermitian codes, which are based on Hermitian codes and inspired by the twisted Reed–Solomon codes described by Beelen, Puchinger, and Nielsen. We demonstrate that these new codes can have high-dimensional Schur squares, and we identify a subfamily of twisted Hermitian codes that achieves a Schur square dimension close to that of a random linear code. Twisted Hermitian codes allow one to work over smaller alphabets than those based on Reed–Solomon codes of similar lengths.


Sign in / Sign up

Export Citation Format

Share Document