Increasingly Intelligent Micromachines

Author(s):  
Tian-Yun Huang ◽  
Hongri Gu ◽  
Bradley J. Nelson

Intelligent micromachines, with dimensions ranging from a few millimeters down to hundreds of nanometers, are miniature systems capable of performing specific tasks autonomously at small scales. Enhancing the intelligence of micromachines to tackle the uncertainty and variability in complex microenvironments has applications in minimally invasive medicine, bioengineering, water cleaning, analytical chemistry, and more. Over the past decade, significant progress has been made in the construction of intelligent micromachines, evolving from simple micromachines to soft, compound, reconfigurable, encodable, multifunctional, and integrated micromachines, as well as from individual to multiagent, multiscale, hierarchical, self-organizing, and swarm micromachines. The field leverages two important trends in robotics research—the miniaturization and intelligentization of machines—but a compelling combination of these two features has yet to be realized. The core technologies required to make such tiny machines intelligent include information media, transduction, processing, exchange, and energy supply, but embedding all of these functions into a system at the micro- or nanoscale is challenging. This article offers a comprehensive introduction to the state-of-the-art technologies used to create intelligence for micromachines and provides insight into the construction of next-generation intelligent micromachines that can adapt to diverse scenarios for use in emerging fields. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Alyssa Kubota ◽  
Laurel D. Riek

An estimated 11% of adults report experiencing some form of cognitive decline, which may be associated with conditions such as stroke or dementia and can impact their memory, cognition, behavior, and physical abilities. While there are no known pharmacological treatments for many of these conditions, behavioral treatments such as cognitive training can prolong the independence of people with cognitive impairments. These treatments teach metacognitive strategies to compensate for memory difficulties in their everyday lives. Personalizing these treatments to suit the preferences and goals of an individual is critical to improving their engagement and sustainment, as well as maximizing the treatment's effectiveness. Robots have great potential to facilitate these training regimens and support people with cognitive impairments, their caregivers, and clinicians. This article examines how robots can adapt their behavior to be personalized to an individual in the context of cognitive neurorehabilitation. We provide an overview of existing robots being used to support neurorehabilitation and identify key principles for working in this space. We then examine state-of-the-art technical approaches for enabling longitudinal behavioral adaptation. To conclude, we discuss our recent work on enabling social robots to automatically adapt their behavior and explore open challenges for longitudinal behavior adaptation. This work will help guide the robotics community as it continues to provide more engaging, effective, and personalized interactions between people and robots. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
William R. Aimutis

Our global population is growing at a pace to exceed 10 billion people by the year 2050. This growth will place pressure on the agricultural production of food to feed the hungry masses. One category that will be strained is protein. Per capita protein consumption is rising in virtually every country for both nutritional reasons and consumption enjoyment. The United Nations estimates protein demand will double by 2050, and this will result in a critical overall protein shortage if drastic changes are not made in the years preceding these changes. Therefore, the world is in the midst of identifying technological breakthroughs to make protein more readily available and sustainable for future generations. One protein sourcing category that has grown in the past decade is plant-based proteins, which seem to fit criteria established by discerning consumers, including healthy, sustainable, ethical, and relatively inexpensive. Although demand for plant-based protein continues to increase, these proteins are challenging to utilize in novel food formulations. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Elizabeth Murphy ◽  
Charles Steenbergen

Mitochondria are responsible for ATP production but are also known as regulators of cell death, and mitochondrial matrix Ca2+ is a key modulator of both ATP production and cell death. Although mitochondrial Ca2+ uptake and efflux have been studied for over 50 years, it is only in the past decade that the proteins responsible for mitochondrial Ca2+ uptake and efflux have been identified. The identification of the mitochondrial Ca2+ uniporter (MCU) led to an explosion of studies identifying regulators of the MCU. The levels of these regulators vary in a tissue- and disease-specific manner, providing new insight into how mitochondrial Ca2+ is regulated. This review focuses on the proteins responsible for mitochondrial transport and what we have learned from mouse studies with genetic alterations in these proteins. Expected final online publication date for the Annual Review of Physiology, Volume 83 is February 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Wei Zhu ◽  
Subo Dong

In the past few years, significant advances have been made in understanding the distributions of exoplanet populations and the architecture of planetary systems. We review the recent progress of planet statistics, with a focus on the inner ≲1-AU region of the planetary system that has been fairly thoroughly surveyed by the Kepler mission. We also discuss the theoretical implications of these statistical results for planet formation and dynamical evolution. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Elliott S. Chiu ◽  
Sue VandeWoude

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include ( a) recombination to result in ERV–XRV chimeras, ( b) ERV induction of immune self-tolerance to XRV antigens, ( c) ERV antigen interference with XRV receptor binding, and ( d) interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


Author(s):  
Philippe Ghosez ◽  
Javier Junquera

Taking a historical perspective, we provide a brief overview of the first-principles modeling of ferroelectric perovskite oxides over the past 30 years. We emphasize how the work done by a relatively small community on the fundamental understanding of ferroelectricity and related phenomena has been at the origin of consecutive theoretical breakthroughs, with an impact going often well beyond the limit of the ferroelectric community. In this context, we first review key theoretical advances such as the modern theory of polarization, the computation of functional properties as energy derivatives, the explicit treatment of finite fields, or the advent of second-principles methods to extend the length and timescale of the simulations. We then discuss how these have revolutionized our understanding of ferroelectricity and related phenomena in this technologically important class of compounds. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Andrew K. Scherer

The mid-1990s through the first decade of the new millennium marked an increase in publications pertaining to war and violence in the ancient past. This review considers how scholars of the past decade have responded to that work. The emerging consensus is that war and violence were endemic to all societies studied by archaeologists, and yet the frequency, intensity, causes, and consequences of violence were highly variable for reasons that defy simplistic explanation. The general trend has been toward archaeologies of war and violence that focus on understanding the nuances of particular places and historical moments. Nevertheless, archaeologists continue to grapple with grand narratives of war, such as the proposition that violence has decreased from ancient to modern times and the role of war and violence in state formation and collapse. Recent research also draws attention to a more expansive definition of violence. Expected final online publication date for the Annual Review of Anthropology, Volume 50 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Mark W. Mueller ◽  
Seung Jae Lee ◽  
Raffaello D’Andrea

The design and control of drones remain areas of active research, and here we review recent progress in this field. In this article, we discuss the design objectives and related physical scaling laws, focusing on energy consumption, agility and speed, and survivability and robustness. We divide the control of such vehicles into low-level stabilization and higher-level planning such as motion planning, and we argue that a highly relevant problem is the integration of sensing with control and planning. Lastly, we describe some vehicle morphologies and the trade-offs that they represent. We specifically compare multicopters with winged designs and consider the effects of multivehicle teams. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Henrik Sandberg ◽  
Vijay Gupta ◽  
Karl H. Johansson

Cyber-vulnerabilities are being exploited in a growing number of control systems. As many of these systems form the backbone of critical infrastructure and are becoming more automated and interconnected, it is of the utmost importance to develop methods that allow system designers and operators to do risk analysis and develop mitigation strategies. Over the last decade, great advances have been made in the control systems community to better understand cyber-threats and their potential impact. This article provides an overview of recent literature on secure networked control systems. Motivated by recent cyberattacks on the power grid, connected road vehicles, and process industries, a system model is introduced that covers many of the existing research studies on control system vulnerabilities. An attack space is introduced that illustrates how adversarial resources are allocated in some common attacks. The main part of the article describes three types of attacks: false data injection, replay, and denial-of-service attacks. Representative models and mathematical formulations of these attacks are given along with some proposed mitigation strategies. The focus is on linear discrete-time plant models, but various extensions are presented in the final section, which also mentions some interesting research problems for future work. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document