scholarly journals TRIM27 promotes IL-6-induced proliferation and inflammation factor production by activating STAT3 signaling in HaCaT cells

2020 ◽  
Vol 318 (2) ◽  
pp. C272-C281
Author(s):  
Xiao Miao ◽  
Yanwei Xiang ◽  
Weiwei Mao ◽  
Yiran Chen ◽  
Qi Li ◽  
...  

The IL-6/STAT3 signaling pathway is required for the development of psoriatic lesions, and tripartite motif-containing 27 (TRIM27) is a protein inhibitor of activated STAT3 (PIAS3)-interacting protein that could modulate IL-6-induced STAT3 activation. However, whether TRIM27 is associated with the IL-6/STAT3 signaling pathway in psoriasis remains enigmatic. TRIM27 expression and gene set enrichment analysis in patients with psoriasis were determined using bioinformatics. Human keratinocyte HaCaT cells treated with recombinant protein IL-6 (rh-IL-6) were transduced with lentivirus silencing TRIM27 and/or PIAS3 or, otherwise, transduced with lentivirus expressing TRIM27 and/or lentivirus silencing STAT3, or MG132, a proteasome-specific protease inhibitor. Cell proliferation and inflammation factor production were measured using Cell Counting Kit-8 and ELISA, respectively. TRIM27, proliferation marker protein Ki-67 (Ki67), phospho-STAT3 (p-STAT3), STAT3, and PIAS3 expressions were determined using real-time quantitative PCR, immunofluorescence staining, or Western blot analysis. Coimmunoprecipitation combined with ubiquitination analysis was performed to explore the interaction between TRIM27 and PIAS3. In the present study, TRIM27 expression was increased in psoriatic lesions, associated with the IL-6 signaling pathway, and induced by rh-IL-6 in a time-dependent manner. The increased cell proliferation, inflammation factor production, and expression of Ki67 and of p-STAT3 relative to STAT3 induced by rh-IL-6 and TRIM27 overexpression were significantly inhibited by TRIM27 silencing and STAT3 silencing, respectively. More importantly, TRIM27 interacted with PIAS3, and its overexpression promoted PIAS3 ubiquitination in HaCaT cells. PIAS3 silencing also significantly promoted TRIM27-dependent and IL6-induced STAT3 activation, cell proliferation, and inflammation factor production. In conclusion, our results highlight that TRIM27 expression is significantly increased by IL-6 and suggest a TRIM27/STAT3-dependent mechanism for regulation of inflammation and proliferation-associated development of psoriasis.

2021 ◽  
Vol 17 (73) ◽  
pp. 45
Author(s):  
Juandong Wang ◽  
Ai Li ◽  
Li Zhang ◽  
VishnuPriya Veeraraghavan ◽  
SurapaneniKrishna Mohan

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


2018 ◽  
Vol 46 (5) ◽  
pp. 2138-2148 ◽  
Author(s):  
Shengli Pan ◽  
Yingying Deng ◽  
Jun Fu ◽  
Yuhao Zhang ◽  
Zhijin Zhang ◽  
...  

Background/Aims: A few Rho GTPase activating proteins (RhoGAPs) have been identified as tumor suppressors in a variety of human cancers. ARHGAP17, a member of RhoGAPs, has been reported to be involved in the maintenance of tight junction and epithelial barrier. The present study aimed to explore its expression in colon cancer and the possible function in colonic carcinogenesis. Methods: The mRNA and protein expression was assessed by realtime PCR and immunoblotting, respectively. Cell Counting Kit-8 (CCK-8) and Transwell assays were performed to evaluate cell proliferation and invasion, respectively. Results: We found that ARHGAP17 expression was obviously lower in colon cancer specimens than in normal colonic mucosa. ARHGAP17 expression was associated with tumor stage, size and differentiation. In vitro analysis demonstrated that ARHGAP17 overexpression inhibited cell growth and invasion of HCT-8 and HCT-116 cells. In addition, an in vivo experimental metastasis model showed that ARHGAP17 overexpression restricted cancer metastasis to the lung. Mechanically, we found that Wnt signaling contributed to the functions of ARHGAP17 in colon cancer cells. Gene set enrichment analysis (GSEA) in The Cancer Genome Atlas dataset showed that the Wnt signaling pathway was negatively associated with ARHGAP17 expression. The mRNA expression of β-catenin (an important signaling transducer of canonical Wnt signaling) gene (CTNNB1) was negatively correlated with ARHGAP17 expression. Immunoblot analysis of downstream effectors of β-catenin (c-Myc/p27 and MMP7) in ARHGAP17 overexpressing colon cancer cells and metastatic tumors within the lung also validated the GSEA result. ARHGAP17 overexpression increased the phosphorylation of glycogen synthetase kinase 3β, and decreased β-catenin nuclear localization and transcriptional activity. Furthermore, inhibition of Wnt signaling by Wnt Inhibitor Factor-1 (WIF-1) in HIEC cells with ARHGAP17 knockdown significantly attenuated the promotion effects of ARHGAP17 knockdown on cell proliferation, invasion and the activation of β-catenin. Conclusion: these results suggest that ARHGAP17 might serve as a tumor suppressor in colon cancer progression and metastasis through Wnt/β-catenin signaling pathway.


2020 ◽  
Vol 10 (8) ◽  
pp. 1199-1205
Author(s):  
Demao Kong ◽  
Xia Wang

Background and purpose: As a type of non-coding genetic material widely existing in eukaryotes, a growing amount of research have confirmed that it have close connection with the occurrence and progression of various malignancies. MicroRNA126 is increased in non-small-cell lung cancer, liver cancer and gastric carcinoma. The up-regulation of miR126 in cervical cancer is closely associated with the clinical staging, histological grade, depth of invasion and early metastasis of the tumor, and it is also of great value in predicting the survival prognosis of the tumor. However, there is little known about the relationship between miR126 and pancreatic carcinoma. Therefore, this study explored the miR126-mediated STAT3 signaling pathway in medicating pancreatic cancer cell multiplication, migration, cell cycle and apoptosis in vitro . Methods: PANC-1 cell (human pancreatic cancer cell line) was selected for routine resuscitation and subculture. The experiment is grouped as: blank control group (NC group), empty plasmid transfection group (miR126-NC group), miR126mimic transfection group (overexpression Group) and miR126 inhibition plasmid transfection group (low expression group); cell viability of each group for 12 h, 24 h, 48 h and 72 h was detected using MTT assay. Wound healing assay was used to evaluated the ability of cell migration. Flow cytometry was performed to analyze cell cycle. The mRNA expression of Caspase-3 was determined by reverse transcription PCR (RT-PCR). STAT3 protein was evaluated by western blot. Results: miR126 overexpression significantly increased cell proliferation at 12 h, 24 h, 48 h, and 72 h, while the cell proliferation rates of the low expression group at each time point were significantly reduced in comparision with those of the NC group and the miR126-NC group (P < 0 05). miR126 overexpression significantly induced cell migration, while miR126 low-expression significantly inhibited cell migration (P < 0 05). miR126 overexpression significantly enhanced the percentage of G2/M, while the percentage of G2/M in the low-expressed group was remarkably reduced in comparision with those of the NC group and the miR126-NC group (P < 0 05). The mRNA expression of Caspase-3 was significantly inhibited in miR126 overexpression group, while the expression of Caspase-3 mRNA in the cells with miR126 low expression was remarkably increased (P < 0 05). The protein expression of STAT3 in miR126 overexpression group was notably up-regulated, while the expression level of STAT3 protein in the low expression group was prominently down-regulated (P <0 05). Conclusion: MiR126 overexpression may induces the STAT3 signaling pathway and then regulates cell proliferation, cell migration, cell cycle arrest and cell apoptosis in pancreatic carcinoma.


2020 ◽  
Vol 10 (1) ◽  
pp. 105-109
Author(s):  
Chunling Peng ◽  
Chunqian Feng ◽  
Sha Feng ◽  
Daiqiang Li

Tumor microenvironment can lead to chemotherapy resistance in lung cancer. PD-1 and PD-L1 are core regulatory molecules of immune checkpoint. Our study intends to assess IFN-γ combined with Pembrolizumab’s effect on chemoresistance of lung adenocarcinoma. Human A549/DDP lung adenocarcinoma resistant strains were cultured in vitro and randomly divided into control group, IFN-γ group and Pembrolizumab+IFN-γ group followed by analysis of cell proliferation by MTT assay, cell apoptosis by flow cytometry, the levels of PD-L1 and Bcl-2 by Western Blot, the level of interleukin-10 (IL-10) and IL-17 by ELISA, as well as the expression of JAK/STAT3 signaling pathway by Western Blot. IFN-γ-treated A549/DDP cells showed significantly inhibited cell apoptosis, promoted cell proliferation, increased level of IL-10, IL-17, and elevated expression of PD-L1 and Bcl-2, as well as increased phosphorylation of JAK and STAT3 (P < 0.05). However, Pembrolizumab combined with IFN-γ treatment significantly inhibited cell proliferation, increased cell apoptosis, decreased IL-10 and IL-17 level, PD-L1 and Bcl-2 expression as well as JAK and STAT3 phosphorylation with significant difference compared to IFN-γ treatment alone (P < 0.05). IFN-γ up-regulates PD-L1 expression by up-regulating the JAK/STAT3 pathway, inhibits the apoptosis of drug-resistant cells in lung adenocarcinoma, and promotes cell proliferation. Pembrolizumab can reverse IFN-γ’s effect on drug-resistant cells of lung adenocarcinoma, down-regulate JAK/STAT3 signaling pathway and, promote the apoptosis of drug-resistant lung cancer cells, and inhibit cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document