scholarly journals Performance Monitoring Local Field Potentials in the Medial Frontal Cortex of Primates: Supplementary Eye Field

2010 ◽  
Vol 104 (3) ◽  
pp. 1523-1537 ◽  
Author(s):  
Erik E. Emeric ◽  
Melanie Leslie ◽  
Pierre Pouget ◽  
Jeffrey D. Schall

We describe intracranial local field potentials (LFPs) recorded in the supplementary eye field (SEF) of macaque monkeys performing a saccade countermanding task. The most prominent feature at 90% of the sites was a negative-going polarization evoked by a contralateral visual target. At roughly 50% of sites a negative-going polarization was observed preceding saccades, but in stop signal trials this polarization was not modulated in a manner sufficient to control saccade initiation. When saccades were canceled in stop signal trials, LFP modulation increased with the inferred magnitude of response conflict derived from the coactivation of gaze-shifting and gaze-holding neurons. At 30% of sites, a pronounced negative-going polarization occurred after errors. This negative polarity did not appear in unrewarded correct trials. Variations of response time with trial history were not related to any features of the LFP. The results provide new evidence that error-related and conflict-related but not feedback-related signals are conveyed by the LFP in the macaque SEF and are important for identifying the generator of the error-related negativity.

2021 ◽  
Vol 14 ◽  
Author(s):  
Elena Sildatke ◽  
Thomas Schüller ◽  
Theo O. J. Gründler ◽  
Markus Ullsperger ◽  
Veerle Visser-Vandewalle ◽  
...  

For successful goal-directed behavior, a performance monitoring system is essential. It detects behavioral errors and initiates behavioral adaptations to improve performance. Two electrophysiological potentials are known to follow errors in reaction time tasks: the error-related negativity (ERN), which is linked to error processing, and the error positivity (Pe), which is associated with subjective error awareness. Furthermore, the correct-related negativity (CRN) is linked to uncertainty about the response outcome. Here we attempted to identify the involvement of the nucleus accumbens (NAc) in the aforementioned performance monitoring processes. To this end, we simultaneously recorded cortical activity (EEG) and local field potentials (LFP) during a flanker task performed by four patients with severe opioid abuse disorder who underwent electrode implantation in the NAc for deep brain stimulation. We observed significant accuracy-related modulations in the LFPs at the time of the ERN/CRN in two patients and at the time of Pe in three patients. These modulations correlated with the ERN in 2/8, with CRN in 5/8 and with Pe in 6/8, recorded channels, respectively. Our results demonstrate the functional interrelation of striatal and cortical processes in performance monitoring specifically related to error processing and subjective error awareness.


2008 ◽  
Vol 99 (2) ◽  
pp. 759-772 ◽  
Author(s):  
Erik E. Emeric ◽  
Joshua W. Brown ◽  
Melanie Leslie ◽  
Pierre Pouget ◽  
Veit Stuphorn ◽  
...  

We describe intracranial local field potentials (LFP) recorded in the anterior cingulate cortex (ACC) of macaque monkeys performing a saccade countermanding task. The most prominent feature at ∼70% of sites was greater negative polarity after errors than after rewarded correct trials. This negative polarity was also evoked in unrewarded correct trials. The LFP evoked by the visual target was much less polarized, and the weak presaccadic modulation was insufficient to control the initiation of saccades. When saccades were cancelled, LFP modulation decreased slightly with the magnitude of response conflict that corresponds to the coactivation of gaze-shifting and -holding neurons estimated from the probability of canceling. However, response time adjustments on subsequent trials were not correlated with LFP polarity on individual trials. The results provide clear evidence that error- and feedback-related, but not conflict-related, signals are carried by the LFP in the macaque ACC. Finding performance monitoring field potentials in the ACC of macaque monkeys establishes a bridge between event-related potential and functional brain-imaging studies in humans and neurophysiology studies in non-human primates.


2010 ◽  
Vol 103 (2) ◽  
pp. 801-816 ◽  
Author(s):  
Veit Stuphorn ◽  
Joshua W. Brown ◽  
Jeffrey D. Schall

The goal of this study was to determine whether the activity of neurons in the supplementary eye field (SEF) is sufficient to control saccade initiation in macaque monkeys performing a saccade countermanding (stop signal) task. As previously observed, many neurons in the SEF increase the discharge rate before saccade initiation. However, when saccades are canceled in response to a stop signal, effectively no neurons with presaccadic activity display discharge rate modulation early enough to contribute to saccade cancellation. Moreover, SEF neurons do not exhibit a specific threshold discharge rate that could trigger saccade initiation. Yet, we observed more subtle relations between SEF activation and saccade production. The activity of numerous SEF neurons was correlated with response time and varied with sequential adjustments in response latency. Trials in which monkeys canceled or produced a saccade in a stop signal trial were distinguished by a modest difference in discharge rate of these SEF neurons before stop signal or target presentation. These findings indicate that neurons in the SEF, in contrast to counterparts in the frontal eye field and superior colliculus, do not contribute directly and immediately to the initiation of visually guided saccades. However the SEF may proactively regulate saccade production by biasing the balance between gaze-holding and gaze-shifting based on prior performance and anticipated task requirements.


2017 ◽  
Author(s):  
Amir Sajad ◽  
David C. Godlove ◽  
Jeffrey D. Schall

Cortical circuit mechanisms in medial frontal cortex enabling executive control are unknown. Hence, in monkeys performing a saccade countermanding task to earn larger or smaller fluid rewards, we sampled spiking and synaptic activity simultaneously across all layers of the supplementary eye field (SEF), an agranular cortical area contributing to performance monitoring in nonhuman primate and human studies. Laminar-specific synaptic currents with associated spike rate facilitation and suppression represented error production, reward gain or loss feedback, and reward delivery. The latency, polarity and magnitude of current and spike rate modulation were not predicted by the canonical cortical microcircuit. Pronounced synaptic currents in layer 2/3, which are modulated by loss magnitude, will contribute to the error-related negativity (ERN) and feedback-related negativity (FRN). These unprecedented findings reveal critical features of the cortical microcircuitry supporting performance monitoring and demonstrate that SEF can contribute to the error- and feedback-related negativity.


2021 ◽  
Vol 11 (7) ◽  
pp. 882
Author(s):  
Yeon Hee Yu ◽  
Seong-Wook Kim ◽  
Dae-Kyoon Park ◽  
Ho-Yeon Song ◽  
Duk-Soo Kim ◽  
...  

Increased prevalence of chronic kidney disease (CKD) and neurological disorders including cerebrovascular disease, cognitive impairment, peripheral neuropathy, and dysfunction of central nervous system have been reported during the natural history of CKD. Psychological distress and depression are serious concerns in patients with CKD. However, the relevance of CKD due to decline in renal function and the pathophysiology of emotional deterioration is not clear. Male Sprague Dawley rats were divided into three groups: sham control, 5/6 nephrectomy at 4 weeks, and 5/6 nephrectomy at 10 weeks. Behavior tests, local field potentials, and histology and laboratory tests were conducted and investigated. We provided direct evidence showing that CKD rat models exhibited anxiogenic behaviors and depression-like phenotypes, along with altered hippocampal neural oscillations at 1–12 Hz. We generated CKD rat models by performing 5/6 nephrectomy, and identified higher level of serum creatinine and blood urea nitrogen (BUN) in CKD rats than in wild-type, depending on time. In addition, the level of α-smooth muscle actin (α-SMA) and collagen I for renal tissue was markedly elevated, with worsening fibrosis due to renal failures. The level of anxiety and depression-like behaviors increased in the 10-week CKD rat models compared with the 4-week rat models. In the recording of local field potentials, the power of delta (1–4 Hz), theta (4–7 Hz), and alpha rhythm (7–12 Hz) was significantly increased in the hippocampus of CKD rats compared with wild-type rats. Together, our findings indicated that anxiogenic behaviors and depression can be induced by CKD, and these abnormal symptoms can be worsened as the onset of CKD was prolonged. In conclusion, our results show that the hippocampus is vulnerable to uremia.


Sign in / Sign up

Export Citation Format

Share Document