scholarly journals Role of Methylglyoxal in Alzheimer’s Disease

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Cristina Angeloni ◽  
Laura Zambonin ◽  
Silvana Hrelia

Alzheimer’s disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer’s disease are extracellular aggregation of amyloidβpeptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer’s disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer’s disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer’s disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer’s disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease.

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Maja Jazvinšćak Jembrek ◽  
Patrick R. Hof ◽  
Goran Šimić

Alzheimer’s disease (AD), the most common chronic and progressive neurodegenerative disorder, is characterized by extracellular deposits of amyloidβ-peptides (Aβ) and intracellular deposits of hyperphosphorylated tau (phospho-tau) protein. Ceramides, the major molecules of sphingolipid metabolism and lipid second messengers, have been associated with AD progression and pathology via Aβgeneration. Enhanced levels of ceramides directly increase Aβthrough stabilization ofβ-secretase, the key enzyme in the amyloidogenic processing of Aβprecursor protein (APP). As a positive feedback loop, the generated oligomeric and fibrillar Aβinduces a further increase in ceramide levels by activating sphingomyelinases that catalyze the catabolic breakdown of sphingomyelin to ceramide. Evidence also supports important role of ceramides in neuronal apoptosis. Ceramides may initiate a cascade of biochemical alterations, which ultimately leads to neuronal death by diverse mechanisms, including depolarization and permeabilization of mitochondria, increased production of reactive oxygen species (ROS), cytochrome c release, Bcl-2 depletion, and caspase-3 activation, mainly by modulating intracellular signalling, particularly along the pathways related to Akt/PKB kinase and mitogen-activated protein kinases (MAPKs). This review summarizes recent findings related to the role of ceramides in oxidative stress-driven neuronal apoptosis and interplay with Aβin the cascade of events ending in neuronal degeneration.


2012 ◽  
Vol 385 (10) ◽  
pp. 953-959 ◽  
Author(s):  
Hyun Ah Kim ◽  
Alyson A. Miller ◽  
Grant R. Drummond ◽  
Amanda G. Thrift ◽  
Thiruma V. Arumugam ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Varshil Mehta ◽  
Kavya Bhatt ◽  
Nimit Desai ◽  
Mansi Naik

Alzheimer’s disease (AD) is a chronic and slowly progressing neurodegenerative disorder which has become a major health concern worldwide. The literature has shown that oxidative stress is one of the most important risk factors behind the cause of AD. Oxidative stress often leads to the production of Reactive Oxygen Species (ROS). D-Galactose, a physiological nutrient and reducing sugar, non-enzymatically reacts with amines of amino acids in proteins and peptides to form Advanced Glycation End products which activate its receptors coupled to Biochemical pathways that stimulate free radical production and induces mitochondrial dysfunction which damages the neuron intracellularly. High dosage of D-Galactose also suppresses the expression of nerve growth factors and its associated protein which results in the degeneration of nerve cells and reduction of acetylcholine levels in brain regions. This article put forwards the advantages of using Lactic Acid Bacteria (Probiotics) possessing anti-oxidant properties and which produces Acetyl Choline against D-Galactose induced Alzheimer’s disease.


2008 ◽  
Vol 14 (10) ◽  
pp. 962-968 ◽  
Author(s):  
Sho-ichi Yamagishi ◽  
Seiji Ueda ◽  
Takanori Matsui ◽  
Kazuo Nakamura ◽  
Seiya Okuda

Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200084 ◽  
Author(s):  
Gerald Veurink ◽  
George Perry ◽  
Sandeep Kumar Singh

The joint attack on the body by metabolic acidosis and oxidative stress suggests that treatment in degenerative diseases, including Alzheimer's disease (AD), may require a normalizing of extracellular and intracellular pH with simultaneous supplementation of an antioxidant combination cocktail at a sufficiently high dose. Evidence is also accumulating that combinations of antioxidants may be more effective, taking advantage of synergistic effects of appropriate antioxidants as well as a nutrient-rich diet to prevent and reverse AD. This review focuses on nutritional, nutraceutical and antioxidant treatments of AD, although they can also be used in other chronic degenerative and neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document