scholarly journals Rapid Biosynthesis of Silver Nanoparticles Based on Flocculation and Reduction of an Exopolysaccharide from Arthrobacter sp. B4: Its Antimicrobial Activity and Phytotoxicity

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Li Yumei ◽  
Li Yamei ◽  
Li Qiang ◽  
Bao Jie

Silver nanoparticles (AgNPs) were rapidly synthesized using an exopolysaccharide from Arthrobacter sp. B4 (B4-EPS). The optimum condition for AgNPs synthesis was under the concentration of 5 g/L B4-EPS and 1 mM AgNO3 at 80°C between pH 7.0 and 8.0. The resulting AgNPs displayed a face-centred-cubic structure with the size range from 9 nm to 72 nm. Further analysis showed that flocculation and reduction of B4-EPS played a pivotal role in the formation of AgNPs. Furthermore, these nanoparticles exhibited great stability, excellent antimicrobial activity, and low phytotoxicity. The aforementioned data provide a feasible and efficient approach for green synthesis of AgNPs using microbial polysaccharides with flocculation and reduction activity, which will be promising in medical filed.

RSC Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 2673-2702 ◽  
Author(s):  
Anupam Roy ◽  
Onur Bulut ◽  
Sudip Some ◽  
Amit Kumar Mandal ◽  
M. Deniz Yilmaz

In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.


Author(s):  
P. Mosae Selvakumar ◽  
Churchil Angel Antonyraj ◽  
Revington Babu ◽  
Arun Dakhsinamurthy ◽  
N. Manikandan ◽  
...  

LWT ◽  
2019 ◽  
Vol 103 ◽  
pp. 293-300 ◽  
Author(s):  
Karen M. Soto ◽  
Camila T. Quezada-Cervantes ◽  
Montserrat Hernández-Iturriaga ◽  
Gabriel Luna-Bárcenas ◽  
Rafael Vazquez-Duhalt ◽  
...  

2014 ◽  
Vol 13 (02) ◽  
pp. 1450010
Author(s):  
Anandini Rout ◽  
Padan K. Jena ◽  
Debasish Sahoo ◽  
Umesh K. Parida ◽  
Birendra K. Bindhani

Silver nanoparticles ( AgNPs ) were prepared from the plant extract of N. arbor-tristis under atmospheric conditions through green synthesis and characterized by various physicochemical techniques like UV-Visible spectroscopy, IR Spectra, energy dispersive X-ray spectrometry (EDS), X-ray diffraction and transmission electron microscopy (TEM) and the results confirmed the synthesis of homogeneous and stable AgNPs by the plant extracts. The antimicrobial activity of AgNPs was investigated against most common bacteria found in burn wound Staphylococcus epidermidis and Pseudomonas aeruginosa. In these tests, Mueller Hinton agar plates were used with AgNPs of various concentrations, supplemented in liquid systems. P. aeruginosa was inhibited at the low concentration of AgNPs , whereas the growth-inhibitory effect on S. epidermidis was mild. These results suggest that AgNPs can be used as effective growth inhibitors of various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.


2020 ◽  
Vol 11 (2) ◽  
pp. 1849-1856
Author(s):  
Chin Zi Hang ◽  
Neeraj Kumar Fuloria ◽  
Oh Jian Hong ◽  
Chuah Bee Kim ◽  
Bernice Yii Shu Ting ◽  
...  

Facts over microorganisms to predominate periodontitis, shifting of human microbiota by Dimocarpus longan (D. longan) plant, and potentiation of antimicrobial activity by biosynthetic silver nanoparticles (SNPs) intended present study to biosynthesize, optimize, characterize and evaluate the antimicrobial potential of silver nanoparticles (SNPs) obtained using D. longan leaves aqueous extract (DLLAE). Study involved preparation of DLLAE using decoction method. The DLLAE was subjected to biosynthesis of SNPs followed by optimization (using UV-Visible spectrometry), characterization (by FTIR, FESEM, XRD, and EDX), stability, and antimicrobial activity of SNPs against periodontitis triggering human microflora. Biosynthesized SNPs exhibited signal between 416-453 nm. Optimization study established AgNO3 concentration (5 mM), pH 4, DLLAE and AgNO3 ratio (1:9) and temperature (60°C) as parametric requirement for SNPs biosynthesis using DLLAE. Stability study exhibited signal between 489-553 nm supporting SNPs stability. Characterization data of FESEM showed that SNPs were poly dispersed, and spherical shaped. Biosynthesized SNPs size ranged from 74.82 nm to 131.5 nm. The XRD data revealed presence of signals at 38.08°, 44.33°, 64.47°, and 78.83° 2θ values indexed to silver cubic structure planes. In EDX study, silver exhibited strong signal (55.54%). Antimicrobial investigation explored the high inhibitory potential of SNPs against B. subtilis and P. aeruginosa; and low inhibitory potential against S. aureus and E. coli. Present study conclude that biosynthesis of SNPs using DLLAE is an efficient method and biosynthetic SNPs possess high antimicrobial potential against P. aeruginosa and B. subtilis the periodontitis triggering pathogens.


Sign in / Sign up

Export Citation Format

Share Document