scholarly journals Gujiansan Ameliorates Avascular Necrosis of the Femoral Head by Regulating Autophagy via the HIF-1α/BNIP3 Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Han ◽  
Yuan Chai ◽  
Xiao-yun Zhang ◽  
Feng Chen ◽  
Zhi-wei Xu ◽  
...  

Background. Clinically, the traditional Chinese medicine compound Gujiansan has been widely used in the treatment of steroid-induced avascular necrosis of the femoral head (SANFH). The present study aimed to investigate the mechanisms underlying the therapeutic effect of Gujiansan. Methods. A rat model of SANFH was established by the injection of dexamethasone (DEX) at a high dosage of 25 mg/kg/d. Then, Gujiansan was intragastrically administered for 2 weeks, 4 weeks, and 8 weeks, and histological examination of the femoral head was performed. The expression levels of related mRNAs and proteins were analyzed by qRT-PCR, Western blotting, and immunohistochemistry, and the levels of bone biochemical markers and cytokines were detected with ELISA kits. Results. Gujiansan administration ameliorated SANFH and induced the expression of hypoxia-inducible factor-1α (HIF-1α), Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), LC3, and Beclin-1 in the rat model in a dose- and time-dependent manner, and Gujiansan promoted osteocalcin secretion at the femoral head. In addition, Gujiansan increased the levels of bone formation- and bone resorption-specific markers (osteocalcin (OC), bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase-5b (TRACP-5b), N-terminal telopeptides of type I collagen (NTX-1), and C-terminal telopeptide of type I collagen (CTX-1)) and decreased the levels of proinflammatory cytokines (TNF-α, IL-6, and CRP) in a dose- and time-dependent manner. Conclusions. Gujiansan accelerates the formation of a new bone, promotes the absorption of the damaged bone, inhibits the inflammatory response, induces autophagy of the femoral head via the HIF-1α/BNIP3 pathway, and ultimately ameliorates SANFH.

2018 ◽  
Vol 26 (6) ◽  
pp. 724-733 ◽  
Author(s):  
Lynne M. Robertson ◽  
Nicole M. Fletcher ◽  
Michael P. Diamond ◽  
Ghassan M. Saed

Aims:Hypoxia and the resulting oxidative stress play a major role in postoperative tissue fibrosis. The objective of this study was to determine the effect of l-alanyl-l-glutamine (Ala-Gln) on key markers of postoperative tissue fibrosis: hypoxia-inducible factor (HIF) 1α and type I collagen.Methods:Primary cultures of human normal peritoneal fibroblasts (NPF) established from normal peritoneal tissue were treated with increasing doses of Ala-Gln (0, 1, 2, or 10 mM) with hypoxia ([2% O2] 0-48 hours; continuous hypoxia) or after hypoxia (0.5, 1, 2, 4 hours) and restoration of normoxia (episodic hypoxia) with immediate treatment with Ala-Gln. Hypoxia-inducible factor 1α and type 1 collagen levels were determined by enzyme-linked immunosorbent assay. Data were analyzed with 1-way analysis of variance followed by Tukey tests with Bonferroni correction.Results:Hypoxia-inducible factor 1α and type I collagen levels increased in untreated controls by 3- to 4-fold in response to continuous and episodic hypoxia in human NPF. Under continuous hypoxia, HIF-1α and type I collagen levels were suppressed by Ala-Gln in a dose-dependent manner. l-alanyl-l-glutamine treatment after episodic hypoxia also suppressed HIF-1α and type I collagen levels for up to 24 hours for all doses and up to 48 hours at the highest dose, regardless of exposure time to hypoxia.Conclusions:l-alanyl-l-glutamine significantly suppressed hypoxia-induced levels of key tissue fibrosis (adhesion) phenotype markers under conditions of continuous as well as episodic hypoxia in vitro. This effect of glutamine on molecular events involved in the cellular response to insult or injury suggests potential therapeutic value for glutamine in the prevention of postoperative tissue fibrosis.


2018 ◽  
Vol 7 (12) ◽  
pp. 479 ◽  
Author(s):  
Tsukasa Kobayashi ◽  
Yukio Nakamura ◽  
Takako Suzuki ◽  
Tomomi Yamaguchi ◽  
Ryojun Takeda ◽  
...  

Osteogenesis imperfecta (OI) is a connective tissue disorder that is characterized by low bone density leading to recurrent fractures. The efficacy of the anti-resorption drug denosumab for OI with osteoporosis is still largely unknown. We herein describe the clinical outcomes of eight osteoporotic cases of OI to examine the effects and safety of denosumab. This retrospective, consecutive case series included eight patients respectively aged 42, 40, 14, 22, 3, 51, 37, and 9 years. We measured the bone mineral density (BMD) of the lumbar 1–4 spine (L-BMD) and bilateral hips (H-BMD), bone-specific alkaline phosphatase, urinary type I collagen amino-terminal telopeptide, and tartrate-resistant acid phosphatase 5b before and during denosumab therapy. Despite multiple pretreatment fractures in the cohort, no fractures or severe side effects, such as hypocalcemia, were observed during the observational period apart from a fracture in a young pediatric girl. Both L-BMD and H-BMD were increased by denosumab in seven of eight cases. Bone turnover markers were inhibited in most cases by denosumab therapy. Denosumab treatment could generally raise BMD without any adverse effects. The agent therefore represents a good therapeutic option for OI with osteoporosis.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


2010 ◽  
Vol 38 (06) ◽  
pp. 1161-1169 ◽  
Author(s):  
Siming Guan ◽  
Bin Wang ◽  
Wei Li ◽  
Jinghuan Guan ◽  
Xin Fang

This study investigates the effects of beriberine on the expression of lectin-like ox-LDL receptor-1 (LOX-1), scavenger receptor A (SR-A), SR class B type I (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) in human macrophage-derived foam cells induced by ox-LDL. Different concentrations of Berberine were co-cultured with THP-1 derived foam cells. The mRNA and protein expressions of LOX-1, SR-A, SR-BI and ABCA1 were determined by RT-PCR and Western blot analysis, respectively. Ox-LDL significantly increased the expression of LOX-1 and inhibited the expression of SR-BI in a dose- and time-dependent manner. Berberine significantly inhibited the effects of ox-LDL in a dose- and time-dependent manner. Moreover, ox-LDL significantly promoted ABCA1 expression. However, berberine had no effect on SR-A or ABCA1 expression. Berberine can inhibit the expression of LOX-1 and promote the expression of SR-BI in macrophage-derived foam cells. Therefore, berberine could be used to treat atherosclerotic diseases.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


2003 ◽  
Vol 77 (2) ◽  
pp. 197-203 ◽  
Author(s):  
A. Liesegang ◽  
M.-L. Sassi ◽  
J. Risteli

AbstractTwelve 6-month-old growing female goats and sheep were used in this study. Blood samples were obtained in the morning before goats and sheep were given food and then at 2-h intervals for 24 h (part I). This procedure was repeated 2 weeks later (part II). Concentrations of osteocalcin (OC), activities of total (tAP) and bone-specific alkaline phosphatase (bAP), degradation products of C-terminal telopeptide of type-I collagen (CrossLaps™ CL), and carboxyterminal telopeptide of type-I collagen (ICTP) were measured in serum.In both parts of the study, all bone marker concentrations were significantly higher in goats than in sheep. The OC concentrations in goats increased in the late afternoon/evening and decreased thereafter to reach values similar to those obtained at the beginning. The ICTP concentrations in goats slowly decreased until 14:00 h, increased, and decreased again. The concentrations in sheep decreased continuously but not significantly, towards the morning sampling. The CL concentrations increased in both sheep and goats during the night but at 06:00 h started to decrease to levels found at the beginning of testing. The bAP activities decreased in goats from 20:00 to 22:00 h. Changes in the concentrations of bone markers were mainly observed in goats of this study. As documented for bone resorption and formation in other species, circadian rhythms were evident for concentrations of ICTP, CL, bAP and OC. The present study indicates that growing goats may have a physiologically higher bone turn-over than growing sheep, because the bone marker concentrations were always higher.


1995 ◽  
Vol 41 (11) ◽  
pp. 1592-1598 ◽  
Author(s):  
A Blumsohn ◽  
K E Naylor ◽  
A M Assiri ◽  
R Eastell

Abstract We examined the response of different biochemical markers of bone resorption to bisphosphonate therapy (400 mg of etidronate daily for 6 months) in mild Paget disease (n = 14). Urinary markers included hydroxyproline (OHP), total (T) and free (F) pyridinolines (Pyds) determined by HPLC, immunoreactive FPyds, immunoreactive TPyds, and the N- and C-terminal telopeptides of type I collage (NTx, CL). Serum measurements included tartrate-resistant acid phosphatase (TRAcP) and the C-terminal telopeptide of type I collagen (ICTP). ICTP and TRAcP showed a minimal response to therapy (% change at 6 months, -13.1 +/- 6.8 and -6.7 +/- 3.4, respectively). The response was greatest for urinary telopeptides (NTx and CL; % change -75.7 +/- 7.5 and -73.4 +/- 8.9, respectively). The response was somewhat greater for TPyds than for FPyds. We conclude that: (a) ICTP and TRAcP are unreliable indicators of changes in bone turnover; (b) oligopeptide-bound Pyds and telopeptide fragments of type I collagen in urine show a somewhat greater response to therapy than do FPyds and may be more sensitive indicators of bone resorption; and (c) as yet no evidence suggests that these markers are substantially better predictors of the clinical response to therapy than serum total alkaline phosphatase or urinary OHP. There are several problems with the interpretation of these measurements in Paget disease, and the clinical utility of these measurements remains uncertain.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2508-2515 ◽  
Author(s):  
R Polanowska-Grabowska ◽  
AR Gear

Abstract Adhesion of human platelets to type I collagen under arterial flow conditions is extremely fast, being mediated primarily by the alpha 2 beta 1 integrin (glycoprotein Ia/IIa). We have investigated the involvement of cyclic nucleotides in platelet adhesion to soluble native collagen immobilized on Sepharose beads using a new microadhesion assay under arterial flow conditions. To prevent platelet stimulation by thromboxanes and adenosine diphosphate (ADP), experiments were performed with aspirin-treated platelets in the presence of ADP-removing enzyme systems such as creatine phosphate/creatine phosphokinase or apyrase. Rapid reciprocal changes in platelet adenosine 3′5′-cyclic monophosphate (cAMP) and guanosine 3′5′-cyclic monophosphate (cGMP) occurred during adhesion. cAMP levels in adherent platelets were 2.4-fold lower than in effluent platelets or in static controls, whereas cGMP levels were increased 2.4-fold. These results suggest that contact between platelets and collagen stimulates guanylate cyclase and inhibits adenylate cyclase. This occurs in the absence of the platelet release reaction. We also studied short-term effects of agents that regulate cyclic nucleotide synthesis, prostaglandin E1 (PGE1) and sodium nitroprusside (SNP). After only 3.8 seconds at 10 to 30 dyne/cm2, PGE1 (10 mumol/L) increased cAMP 16.4- fold, whereas SNP (50 mumol/L) increased cGMP ninefold and caused a 3.2- fold increase in cAMP. Both PGE1 and SNP rapidly (< 5 seconds) inhibited platelet adhesion in a dose-dependent manner that was correlated with the increase in cyclic nucleotides. Our data suggest that cAMP and cGMP play a regulatory role in the initial phases of platelet adhesion to collagen mediated by the alpha 2 beta 1 integrin receptor.


2006 ◽  
Vol 91 (11) ◽  
pp. 4453-4458 ◽  
Author(s):  
Mariateresa Sciannamblo ◽  
Gianni Russo ◽  
Debora Cuccato ◽  
Giuseppe Chiumello ◽  
Stefano Mora

Abstract Context: Patients with congenital adrenal hyperplasia (CAH) receive glucocorticoids as replacement therapy. Glucocorticoid therapy is the most frequent cause of drug-induced osteoporosis. Objective: The objective of the study was to evaluate bone mineral density (BMD) and bone metabolism in CAH patients. Design: This was a cross-sectional observational study. Setting: The study was conducted at a referral center for pediatric endocrinology. Patients and Other Participants: Thirty young patients with the classical form of CAH (aged 16.4–29.7 yr) treated with glucocorticoid from diagnosis (duration of treatment 16.4–29.5 yr) and 138 healthy controls (aged 16.0–30.0 yr) were enrolled. Main Outcome Measures: BMD was measured in the lumbar spine and whole body by dual-energy x-ray absorptiometry. Bone formation and resorption rates were estimated by serum measurements of bone-specific alkaline phosphatase and C-terminal telopeptide of type I collagen, respectively. Results: CAH patients were shorter than controls (women −6.8 and men −13.3 cm). Therefore, several methods were used to account for the effect of this difference on bone measurements. Whole-body BMD measurements were significantly lower, compared with controls (P &lt; 0.03), after controlling for height (on average −2.5% in females and −9.3% in male patients). No differences were found in lumbar spine measurements. Bone-specific alkaline phosphatase and C-terminal telopeptide of type I collagen serum concentrations were higher in CAH patients than control subjects (P &lt; 0.04). BMD measurements and bone metabolism markers did not correlate with the actual glucocorticoid dose or mean dose over the previous 7 yr. Conclusions: Young adult patients with the classical form of CAH have decreased bone density values, compared with healthy controls. This may put them at risk of developing osteoporosis early in life.


Sign in / Sign up

Export Citation Format

Share Document