scholarly journals Social Recommendation System Based on Hypergraph Attention Network

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhongxiu Xia ◽  
Weiyu Zhang ◽  
Ziqiang Weng

In recent years, due to the rise of online social platforms, social networks have more and more influence on our daily life, and social recommendation system has become one of the important research directions of recommendation system research. Because the graph structure in social networks and graph neural networks has strong representation capabilities, the application of graph neural networks in social recommendation systems has become more and more extensive, and it has also shown good results. Although graph neural networks have been successfully applied in social recommendation systems, their performance may still be limited in practical applications. The main reason is that they can only take advantage of pairs of user relations but cannot capture the higher-order relations between users. We propose a model that applies the hypergraph attention network to the social recommendation system (HASRE) to solve this problem. Specifically, we take the hypergraph’s ability to model high-order relations to capture high-order relations between users. However, because the influence of the users’ friends is different, we use the graph attention mechanism to capture the users’ attention to different friends and adaptively model selection information for the user. In order to verify the performance of the recommendation system, this paper carries out analysis experiments on three data sets related to the recommendation system. The experimental results show that HASRE outperforms the state-of-the-art method and can effectively improve the accuracy of recommendation.

Author(s):  
Lakshmikanth Paleti ◽  
P. Radha Krishna ◽  
J.V.R. Murthy

Recommendation systems provide reliable and relevant recommendations to users and also enable users’ trust on the website. This is achieved by the opinions derived from reviews, feedbacks and preferences provided by the users when the product is purchased or viewed through social networks. This integrates interactions of social networks with recommendation systems which results in the behavior of users and user’s friends. The techniques used so far for recommendation systems are traditional, based on collaborative filtering and content based filtering. This paper provides a novel approach called User-Opinion-Rating (UOR) for building recommendation systems by taking user generated opinions over social networks as a dimension. Two tripartite graphs namely User-Item-Rating and User-Item-Opinion are constructed based on users’ opinion on items along with their ratings. Proposed approach quantifies the opinions of users and results obtained reveal the feasibility.


Author(s):  
Wenqi Fan ◽  
Yao Ma ◽  
Qing Li ◽  
Yuan He ◽  
Eric Zhao ◽  
...  

Data ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Davide Buffelli ◽  
Fabio Vandin

Graph Neural Networks (GNNs) rely on the graph structure to define an aggregation strategy where each node updates its representation by combining information from its neighbours. A known limitation of GNNs is that, as the number of layers increases, information gets smoothed and squashed and node embeddings become indistinguishable, negatively affecting performance. Therefore, practical GNN models employ few layers and only leverage the graph structure in terms of limited, small neighbourhoods around each node. Inevitably, practical GNNs do not capture information depending on the global structure of the graph. While there have been several works studying the limitations and expressivity of GNNs, the question of whether practical applications on graph structured data require global structural knowledge or not remains unanswered. In this work, we empirically address this question by giving access to global information to several GNN models, and observing the impact it has on downstream performance. Our results show that global information can in fact provide significant benefits for common graph-related tasks. We further identify a novel regularization strategy that leads to an average accuracy improvement of more than 5% on all considered tasks.


Author(s):  
Ruobing Xie ◽  
Zhijie Qiu ◽  
Jun Rao ◽  
Yi Liu ◽  
Bo Zhang ◽  
...  

Real-world integrated personalized recommendation systems usually deal with millions of heterogeneous items. It is extremely challenging to conduct full corpus retrieval with complicated models due to the tremendous computation costs. Hence, most large-scale recommendation systems consist of two modules: a multi-channel matching module to efficiently retrieve a small subset of candidates, and a ranking module for precise personalized recommendation. However, multi-channel matching usually suffers from cold-start problems when adding new channels or new data sources. To solve this issue, we propose a novel Internal and contextual attention network (ICAN), which highlights channel-specific contextual information and feature field interactions between multiple channels. In experiments, we conduct both offline and online evaluations with case studies on a real-world integrated recommendation system. The significant improvements confirm the effectiveness and robustness of ICAN, especially for cold-start channels. Currently, ICAN has been deployed on WeChat Top Stories used by millions of users. The source code can be obtained from https://github.com/zhijieqiu/ICAN.


2021 ◽  
pp. 1-13
Author(s):  
Jianfeng Wang ◽  
Ruomei Wang ◽  
Shaohui Liu

Session-based recommendation is an overwhelming task owing to the inherent ambiguity in anonymous behaviors. Graph convolutional neural networks are receiving wide attention for session-based recommendation research for the sake of their ability to capture the complex transitions of interactions between sessions. Recent research on session-based recommendations mainly focuses on sequential patterns by utilizing graph neural networks. However, it is undeniable that proposed methods are still difficult to capture higher-order interactions between contextual interactions in the same session and has room for improvement. To solve it, we propose a new method based on graph attention mechanism and target oriented items to effectively propagate information, HOGAN for brevity. Higher-order graph attention networks are used to select the importance of different neighborhoods in the graph that consists of a sequence of user actions for recommendation applications. The complementarity between high-order networks is adopted to aggregate and propagate useful signals from the long distant neighbors to solve the long-range dependency capturing problem. Experimental results consistently display that HOGAN has a significantly improvement to 71.53% on precision for the Yoochoose1_64 dataset and enhances the property of the session-based recommendation task.


2020 ◽  
Vol 34 (05) ◽  
pp. 9402-9409
Author(s):  
Lingyong Yan ◽  
Xianpei Han ◽  
Ben He ◽  
Le Sun

Bootstrapping for entity set expansion (ESE) has long been modeled as a multi-step pipelined process. Such a paradigm, unfortunately, often suffers from two main challenges: 1) the entities are expanded in multiple separate steps, which tends to introduce noisy entities and results in the semantic drift problem; 2) it is hard to exploit the high-order entity-pattern relations for entity set expansion. In this paper, we propose an end-to-end bootstrapping neural network for entity set expansion, named BootstrapNet, which models the bootstrapping in an encoder-decoder architecture. In the encoding stage, a graph attention network is used to capture both the first- and the high-order relations between entities and patterns, and encode useful information into their representations. In the decoding stage, the entities are sequentially expanded through a recurrent neural network, which outputs entities at each stage, and its hidden state vectors, representing the target category, are updated at each expansion step. Experimental results demonstrate substantial improvement of our model over previous ESE approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Sheng Bin ◽  
Gengxin Sun

With the widespread use of social networks, social recommendation algorithms that add social relationships between users to recommender systems have been widely applied. Existing social recommendation algorithms only introduced one type of social relationship to the recommendation system, but in reality, there are often multiple social relationships among users. In this paper, a new matrix factorization recommendation algorithm combined with multiple social relationships is proposed. Through experiment results analysis on the Epinions dataset, the proposed matrix factorization recommendation algorithm has a significant improvement over the traditional and matrix factorization recommendation algorithms that integrate a single social relationship.


Sign in / Sign up

Export Citation Format

Share Document