scholarly journals Green Synthesis of Silver Nanoparticles from Alhagi graecorum Leaf Extract and Evaluation of Their Cytotoxicity and Antifungal Activity

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Sumaiya N. Hawar ◽  
Hanady S. Al-Shmgani ◽  
Zainb A. Al-Kubaisi ◽  
Ghassan M. Sulaiman ◽  
Yaser H. Dewir ◽  
...  

Green synthesis of silver nanoparticles (AgNPs) using different plant parts has shown a great potential in medicinal and industrial applications. In this study, AgNPs were in vitro green synthesized using A. graecorum, and its antifungal and antitumoractivities were investigated. Scanning electron microscopy (SEM) image result indicated spherical shape of AgNPs with a size range of 22-36 nm indicated by using Image J program. The functional groups indicated by Fourier-transform infrared spectroscopy (FTIR) represented the groups involved in the reduction of silver ion into nanoparticles. Alhagi graecorum AgNPs inhibited MCF-7 breast cancer cell line growth in increased concentration depend manner, significant differences shown at 50, 100, and 150 μg/ml concentrations compared to the control. Strong antifungal activity against Candida species (C. albicans., C. glabrata, C. parapsilosis, C. tropicales, and C. krusei) was observed and the inhibition zone range from 14-22 mm at a concentration of 0.01 mmol/ml and from 17-27 mm at a concentration of 0.02 mmol/ml. Based on our findings, it is concluded that synthesized silver nanoparticles from A. graecorum can be used as a potential antitumor and antifungal agent for various therapeutical applications.

2018 ◽  
Vol 1 (2) ◽  
pp. 68
Author(s):  
Verry Andre Fabiani ◽  
Febry Sutanti ◽  
Desti Silvia ◽  
Megawati Ayu Putri

An environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticle have been synthesized using water extract of leaves of pucuk idat (Cratoxylum glaucum), commonly known as local Bangka plant. The flavonoid and tannin present in the extract act as reducing agent. AgNO3 0,05 M solution was reducing using the extract at room temperature by stirring. Color changing of the solution was detected at 30 minutes reaction time. The color tends to be darker by the increasing of reaction time. Various techniques used to characterize synthesized nanoparticles are UV-Visible spectrophotometer, x-ray diffraction (XRD) and scanning electron microscopy (SEM). UV-Visible spectrophotometer showed absorbance peak in 405 nm, the XRD shows that silver nanoparticles formed are crystalline. The average particle size of Ag nanoparticles estimated from the Scherrer formula is 35,59 nm, while SEM image shows shape of silver nanoparticle is random and some spherical shape.


Author(s):  
Abdelmageed M. Othman ◽  
Maysa A. Elsayed ◽  
Naser G. Al-Balakocy ◽  
Mohamed M. Hassan ◽  
Ali M. Elshafei

Abstract Background The present study aims to apply an efficient eco-friendly and inexpensive process for green synthesis of silver nanoparticles (AgNPs) through the mediation of fungal proteins from Aspergillus fumigatus DSM819, characterization, and its application as antimicrobial finishing agent in textile fabrics against some infectious microorganisms. Results Optimum conditions for AgNP biosynthesis could be achieved by means of using 60% (v/v) of cell-free filtrate (CFF) and 1.5 mM of AgNO3 at pH 10.0 after 90 min. The obtained AgNPs were of spherical shape with 90% of distribution below than 84.4 nm. The biosynthesized AgNPs exerted an antimicrobial activity against the studied pathogenic microorganisms (E. coli, B. mycoides, and C. albicans). In addition, IC50 values against in vitro tumor cell lines were found to be 31.1, 45.4, 40.9, and 33.5 μg/ml for HCT116, A549, MCF7, and PC3, respectively. Even with a very low concentration (0.25%), the treated PET/C fabrics by AgNPs exerted an antimicrobial activity against E. coli, B. mycoides, and C. albicans to give inhibition zone diameter of 15, 15, and 16 mm, respectively. Conclusions The green biosynthesis approach applied in this study is a non-toxic alternative to the traditional chemical and physical methods, and would be appropriate for biological large-scale production and prospective treatments. Graphical abstract


2020 ◽  
Vol 9 (1) ◽  
pp. 283-293
Author(s):  
Milad Torabfam ◽  
Meral Yüce

AbstractGreen synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. This study describes the practical synthesis of silver nanoparticles (AgNPs) through the reduction of silver nitrate solution using an algal source, Chlorella vulgaris, as the reducing as well as the stabilizing agent. The energy required for this synthesis was supplied by microwave radiation. The ultraviolet-visible spectroscopy exhibited a single peak related to the surface plasmon absorbance of AgNPs at 431 nm. The AgNPs with high stability (a zeta potential of −17 mV), hydrodynamic size distribution of 1–50 nm, and mostly spherical shape were obtained through a 10 min process. Fourier transform infrared spectroscopy analysis revealed that several functional groups, including carbonyl groups of C. vulgaris, play a significant role in the formation of functional NPs. Antibacterial features of the produced AgNPs were verified against those of Salmonella enterica subsp. enterica serovar typhimurium and Staphylococcus aureus, demonstrating a considerable growth inhibition at increasing concentrations of the NPs. As a result, the formed AgNPs can be used as a promising agent against bacterial diseases.


2021 ◽  
Author(s):  
Vanaraj sekar

Abstract A simple and eco-friendly method for the green synthesis of silver nanoparticles (AgNPs) by ultrasound-assisted strategy using Barleria buxifolia leaf extract as a reducing and capping agent was established in this study. The obtained AgNPs were characterized. UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), Energy Dispersive X-Ray Analyzer (EDX), X-ray diffraction, dynamic light scattering (DLS) analysis showed that the obtained AgNPs were mono dispersed spheres with uniform size of 80 nm. UV-vis spectroscopy, FTIR, and XRD analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. The results of ABTS assays showed that high antioxidant activity was seen in the obtained AgNPs. Green synthesized AgNPs showed potent antibacterial and anti-biofilm activity against tested pathogens. Cytotoxicity assay showed that the obtained AgNPs were significantly cytotoxic to cancer cell line (MCF-7). In addition, the AgNPs synthesized in this paper can also photo catalytically degrade methylene blue dye under visible light. The potent bioactivity exhibited by the green synthesized silver nanoparticles leads towards the multiple use as antioxidant, antibacterial, anti-biofilm, cytotoxic as well as photo catalytic agent.


2021 ◽  
Author(s):  
Romina Delalat ◽  
Seyed Ataollah Sadat Shandiz ◽  
Bahareh Pakpour

Abstract The present research was done to investigate the anticancer properties of silver nanoparticles (AgNPs) fabricated using bioactive extract of Onopordum acanthium L. (AgNPs-OAL) against breast cancer cell MDA_MB231 in vitro. The determination studies of AgNPs-OAL were confirmed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) analysis. Interestingly, FESEM image observed the spherical shape of AgNPs-OAL with the range of 1–100 nm. As AgNP-OAL exhibited significant cytotoxicity properties on breast cancer MDA_MB231 cells with IC50 values of 66.04 μg/mL, while lowing toxicity toward normal human embryonic kidney 293 (HEK293) cells with IC50 values of 101.04 μg/mL was evaluated. Further, up-regulation of apoptotic Bax and CAD genes expressions were confirmed by quantitative real-time reverse transcription-PCR (qRT-PCR) technique results. Moreover, enhanced cell cycle population (sub-G1), annexin V/PI staining, acridine orange and ethidium bromide (AO/EB) staining, Hoescht 33258 dye, and generation of reactive oxygen species (ROS) observed in AgNP-OAL-treated MDA_MB231 cancer cells. The green-synthesized AgNP-OAL has promising anticancer efficiency that can trigger apoptosis pathway in the MDA_MB231 breast cancer cells.


2019 ◽  
Vol 42 (1) ◽  
pp. 94-101
Author(s):  
Nur Adibah Mohd Amin ◽  
Rusnah Syahila Duali Hussen ◽  
See Mun Lee ◽  
Kae Shin Sim ◽  
Suerialoasan Navanesan

Abstract Two new diorganotin(IV) complexes with the general formula (RC7H6)2Sn(L) (where RC7H6 = p-ClBn, C1; and p-FBn, C2) were prepared based on the reaction of 2,3-bis(4-hydroxysalicylidene-amino)-maleic nitrile (L) with substituted dibenzyltin(IV) dichloride. The structures were confirmed by elemental analysis, Fourier transform infrared (FT-IR), proton and carbon nuclear magnetic resonance (1H and 13C NMR). They were tested against several cancer cell lines by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. C1, which was most effective against MCF-7 breast cancer cell line, was further investigated in formulation and encapsulation studies, including drug encapsulation efficiency, particle size, morphology and in vitro drug release. An encapsulation of about 90% was achieved with particles of 128 nm average diameter. Field emission scanning electron microscopy (FESEM) confirmed a spherical shape for the encapsulated C1. The cumulative drug release over a period of 60 days in phosphate buffered saline (PBS) at pH 7.4 was 75%. Based on these results, the formulated drug has the potential of a slow release drug for cancer chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document