scholarly journals Caffeic Acid Prevents Vascular Oxidative Stress and Atherosclerosis against Atherosclerogenic Diet in Rats

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Ying Wang ◽  
Gurpreet Kaur ◽  
Manish Kumar ◽  
Ajay Singh Kushwah ◽  
Atul Kabra ◽  
...  

Diet and lifestyle play a crucial role in the progress of some cardiovascular disorders (CVDs). Rising interest in natural products and their pharmacological investigations witnessed therapeutic potential against CVDs. Caffeic acid (CA) is an organic composite hydroxycinnamic acid derivative classified among phenolics. It is a secondary metabolite biosynthesized in all plant species in the form of ester conjugates. The reported pharmacological activities of CA are neuroprotective, cardioprotective, hypoglycemic, antioxidant, and immunomodulatory properties. This work is aimed to examine the outcome of CA in atherogenic diet- (Ath-) induced rat model on lipid profile changes and endothelium function. The method involves a study duration of 35 days utilizing (n = 6) male Wistar rats (180–200 g) that were fed either normal chow or Ath. Study groups are given (i) normal chow diet, (ii) Ath, (iii) Ath + CA (25 or 50 mg/kg, p.o.), (iv) normal chow diet + CA (50 mg/kg, p.o.), and (v) Ath + Atorvastatin (ATORVA) (5 mg/kg, p.o.). Blood samples were collected at the end of the study to measure serum lipid profile, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and tissue oxidative stress level. Hemodynamic parameters and aorta staining were performed. CA treatment ameliorated lipid profile and significantly reduced the oxidative stress level. Aorta staining examination revealed a marked reduction of the atherosclerotic lesions. These findings suggested that CA is an effective treatment approach for preventing atherosclerotic lesion progression attributed to protection against oxidative stress and various enzymatic activities in the Ath model.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jun Tao ◽  
Junxiong Qiu ◽  
Liuyi Lu ◽  
Lisui Zhang ◽  
Yuan Fu ◽  
...  

Atherosclerosis (AS) is one of the most serious and common cardiovascular diseases affecting human health. AS is featured by the accumulation of plaques in vessel walls. The pathophysiology of AS is relevant in the low-density lipoprotein (LDL) uptake by macrophages, as well as the conversion of macrophages to foam cells. However, the mechanisms about how macrophages regulate AS have not been fully elucidated. In this study, we aimed to illuminate the roles of ZBTB20 and to excavate the underlying regulative mechanisms of ZBTB20 in AS. The microarray analysis revealed that ZBTB20 was a hub gene in the oxidative stress and inflammatory responses induced by oxidized LDL (ox-LDL) in AS. Correspondingly, our validation studies showed that ZBTB20 increased in either the human atherosclerotic lesion or the ox-LDL-stimulated macrophages. Moreover, the knockdown of ZBTB20 decreased M1 polarization, suppressed the proinflammatory factors, inhibited mitochondrial fission, and reduced the oxidative stress level of macrophages induced by ox-LDL. The mechanistic studies revealed that the ZBTB20 knockdown suppressed NF-κB/MAPK activation and attenuated the mitochondrial fission possibly via regulating the nucleus translocation of NRF2, a pivotal transcription factor on redox homeostasis. Our in vivo studies showed that the sh-ZBTB20 adenovirus injection could reduce the progression of AS in apolipoprotein E-deficient (ApoE-/-) mice. All in all, these results suggested that ZBTB20 positively regulated the oxidative stress level, mitochondrial fission, and inflammatory responses of macrophages induced by ox-LDL, and the knockdown of ZBTB20 could attenuate the development of AS in ApoE-/- mice.


Food Industry ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Ekaterina V. Pastushkova ◽  
Olga V. Chugunova ◽  
Leonid S. Volkanin

2017 ◽  
Vol 16 (4) ◽  
pp. 1593-1604 ◽  
Author(s):  
Andreas Oberbach ◽  
Sven-Bastiaan Haange ◽  
Nadine Schlichting ◽  
Marco Heinrich ◽  
Stefanie Lehmann ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Antonia RuJia Sun ◽  
Xiaoxin Wu ◽  
Ross Crawford ◽  
Hongxing Li ◽  
Lin Mei ◽  
...  

Obesogenic diets contribute to the pathology of osteoarthritis (OA) by altering systemic and local metabolic inflammation. Yet, it remains unclear how quickly and reproducibly the body responds to weight loss strategies and improve OA. In this study we tested whether switching obese diet to a normal chow diet can mitigate the detrimental effects of inflammatory pathways that contribute to OA pathology. Male C57BL/6 mice were first fed with obesogenic diet (high fat diet) and switched to normal chow diet (obese diet → normal diet) or continued obese diet or normal diet throughout the experiment. A mouse model of OA was induced by surgical destabilization of the medial meniscus (DMM) model into the knee joint. Outcome measures included changes in metabolic factors such as glucose, insulin, lipid, and serum cytokines levels. Inflammation in synovial biopsies was scored and inflammation was determined using FACs sorted macrophages. Cartilage degeneration was monitored using histopathology. Our results indicate, dietary switching (obese diet → normal diet) reduced body weight and restored metabolic parameters and showed less synovial tissue inflammation. Systemic blood concentrations of pro-inflammatory cytokines IL-1α, IL-6, IL-12p40, and IL-17 were decreased, and anti-inflammatory cytokines IL-4 and IL-13 were increased in dietary switch group compared to mice that were fed with obesogenic diet continuously. Although obese diet worsens the cartilage degeneration in DMM OA model, weight loss induced by dietary switch does not promote the histopathological changes of OA during this study period. Collectively, these data demonstrate that switching obesogenic diet to normal improved metabolic syndrome symptoms and can modulate both systemic and synovium inflammation levels.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Qiaoqin Liang ◽  
Mengxin Cai ◽  
Jiaqi Zhang ◽  
Zhenjun Tian

Objective This study was carried out to investigate interval exercise on Smyd1 expression and F-actin sarcomere assembly in non-infarcted myocardium of normal and myocardial infarction(MI) rats and its possible mechanism. Methods Male SD rats were randomly divided into normal control group (C), normal interval exercise group (CE), sham-operated group (S), MI group (MI), MI with interval exercise group (ME) and MI with ROS Tempol group (MT), n=10. MI model was established by left anterior descending coronary artery ligation. Interval exercise was carried out on a small animal treadmill. MT group was given an oral solution of Tempol (2mmol/L). Hemodynamics was performed to evaluate cardiac function. HE and Masson staining were used to analyze the cross-sectional area (CSA) of cardiomyocytes and collagen volume fraction, respectively. T-SOD and MDA kits were used to detect oxidative stress. H9C2 cells were treated with H2O2. Immunofluorescence staining was used to determine Smyd1 expression and F-actin sarcomere assembly. RT-qPCR and Western blotting were used to detect the gene or protein expression of Smyd1, Trx1, Hsp90, MuRF1, cTnI, α-actinin and BNP. Results Smyd1, Trx1, Hsp90, MuRF1 and BNP expression in the peri-infarcted area were up-regulated, but cTnI and α-actinin expression and F-actin assembly were decreased. The cardiac function was reduced. Both interval exercise and Tempol intervention significantly increase the CSA and expression of Smyd1, Trx1, cTnI and α-actinin, improve the antioxidation capacity and F-actin sarcomere assembly and cardiac function, reduce the expression of Hsp90, MuRF1, BNP and ROS level, and inhibit the fibrosis of myocardium. The oxidative stress level was closely related to the Smyd1 expression. Improvement of cardiac function were correlated with Smyd1 expression. H2O2 can induce oxidative stress injuries of H9C2, and its closely related to cardiomyocytes oxidative stress level and Smyd1 expression. Conclusions Interval exercise could promote antioxidant capability and physiological cardiomyocyte hypertrophy, regulate the expression of Smyd1, Hsp90 and MuRF1 in infarcted heart; so as to improve the cardiac function. Smyd1 may participate in pathologic hypertrophy of cardiomyocytes caused by oxidative stress.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Christine Vrakas ◽  
Sheri E Keleman ◽  
Rosario Scalia ◽  
Michael V Autieri

Uncontrolled inflammation leads to many of the chronic diseases associated with obesity. Due to a lack of oxygen in the tissue, expanding adipose tissue becomes hypoxic and pro-inflammatory. Adipocytes release pro-angiogenic factors in an effort to restore blood flow to the tissue. Presently, little is known about the potential for endogenously expressed anti-inflammatory cytokines to attenuate inflammation and also provide pro-angiogenic effects. IL-19 is uniquely anti-inflammatory, pro-angiogenic and is both expressed by and targets various cells types. IL-19 expression in adipocytes and stromal vascular cells is increased in visceral compared to subcutaneous fat, and is also increased in visceral fat on high fat diet (HFD) compared to normal chow diet. There is no known mechanism to explain the role of IL-19 in adipose tissue expansion, and we hypothesized that IL-19 may have pro-angiogenic and anti-inflammatory properties in expanding adipose tissue. We have identified a gene regulatory factor, Interleukin Enhancer-Binding Factor 3 (ILF3) that is induced in adipocytes and stromal vascular cells by HFD and IL-19 treatment. We found that both IL-19 and VEGF induce ILF3 expression in cultured human endothelial cells (hECs). Proliferation is significantly reduced when ILF3 is knocked down using siRNA in hECs. Furthermore, when ILF3 is knocked down and hECs are stimulated with VEGF several angiogenic cytokines are also decreased. Through immunohistochemistry we found that ILF3 translocates from the nucleus to the cytoplasm in visceral fat of C57BL/6 mice fed a HFD, and remains in the nucleus when fed a normal chow diet. In summary IL-19 may be a unique HFD responsive adipokine functioning to reduce inflammation and increase angiogenesis in expanding adipose tissue. The angiogenic function of IL-19 may work through induction of the gene regulatory factor, ILF3.


2022 ◽  
Vol 68 (01/2022) ◽  
Author(s):  
E. Seyhanli ◽  
Ismail Koyuncu ◽  
I. Yasak ◽  
H. Demir ◽  
Ebru Temiz

Sign in / Sign up

Export Citation Format

Share Document