scholarly journals Evolutionary tree-based quasi identifier and federated gradient privacy preservations over big healthcare data

Author(s):  
Sujatha Krishna ◽  
Udayarani Vinayaka Murthy

<span>Big data has remodeled the way organizations supervise, examine and leverage data in any industry. To safeguard sensitive data from public contraventions, several countries investigated this issue and carried out privacy protection mechanism. With the aid of quasi-identifiers privacy is not said to be preserved to a greater extent. This paper proposes a method called evolutionary tree-based quasi-identifier and federated gradient (ETQI-FD) for privacy preservations over big healthcare data. The first step involved in the ETQI-FD is learning quasi-identifiers. Learning quasi-identifiers by employing information loss function separately for categorical and numerical attributes accomplishes both the largest dissimilarities and partition without a comprehensive exploration between tuples of features or attributes. Next with the learnt quasi-identifiers, privacy preservation of data item is made by applying federated gradient arbitrary privacy preservation learning model. This model attains optimal balance between privacy and accuracy. In the federated gradient privacy preservation learning model, we evaluate the determinant of each attribute to the outputs. Then injecting Adaptive Lorentz noise to data attributes our ETQI-FD significantly minimizes the influence of noise on the final results and therefore contributing to privacy and accuracy. An experimental evaluation of ETQI-FD method achieves better accuracy and privacy than the existing methods.</span>

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

Telecare Medicine Information System (TMIS) is now attracting field for remote healthcare, diagnosis and emergency health services etc. The major objective of this type of system is to provide medical facilities to patients who are critically ill and unable to attend hospitals or put in isolation for observations. A major challenge of such systems is to securely transmit patients' health related information to the medical server through an insecure channel. This collected sensitive data is further used by medical practitioners for diagnosis and treatment purposes. Therefore, security and privacy are essential for healthcare data. In this paper, a robust authentication protocol based on Chebyshev Chaotic map has been proposed for adequate security while transmitting data. The privacy preservation is maintained by a rule set which mainly controls the views. A detailed security analysis was performed for the proposed scheme.


2021 ◽  
Author(s):  
Syed Usama Khalid Bukhari ◽  
Anum Qureshi ◽  
Adeel Anjum ◽  
Munam Ali Shah

<div> <div> <div> <p>Privacy preservation of high-dimensional healthcare data is an emerging problem. Privacy breaches are becoming more common than before and affecting thousands of people. Every individual has sensitive and personal information which needs protection and security. Uploading and storing data directly to the cloud without taking any precautions can lead to serious privacy breaches. It’s a serious struggle to publish a large amount of sensitive data while minimizing privacy concerns. This leads us to make crucial decisions for the privacy of outsourced high-dimensional healthcare data. Many types of privacy preservation techniques have been presented to secure high-dimensional data while keeping its utility and privacy at the same time but every technique has its pros and cons. In this paper, a novel privacy preservation NRPP model for high-dimensional data is proposed. The model uses a privacy-preserving generative technique for releasing sensitive data, which is deferentially private. The contribution of this paper is twofold. First, a state-of-the-art anonymization model for high-dimensional healthcare data is proposed using a generative technique. Second, achieved privacy is evaluated using the concept of differential privacy. The experiment shows that the proposed model performs better in terms of utility. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Syed Usama Khalid Bukhari ◽  
Anum Qureshi ◽  
Adeel Anjum ◽  
Munam Ali Shah

<div> <div> <div> <p>Privacy preservation of high-dimensional healthcare data is an emerging problem. Privacy breaches are becoming more common than before and affecting thousands of people. Every individual has sensitive and personal information which needs protection and security. Uploading and storing data directly to the cloud without taking any precautions can lead to serious privacy breaches. It’s a serious struggle to publish a large amount of sensitive data while minimizing privacy concerns. This leads us to make crucial decisions for the privacy of outsourced high-dimensional healthcare data. Many types of privacy preservation techniques have been presented to secure high-dimensional data while keeping its utility and privacy at the same time but every technique has its pros and cons. In this paper, a novel privacy preservation NRPP model for high-dimensional data is proposed. The model uses a privacy-preserving generative technique for releasing sensitive data, which is deferentially private. The contribution of this paper is twofold. First, a state-of-the-art anonymization model for high-dimensional healthcare data is proposed using a generative technique. Second, achieved privacy is evaluated using the concept of differential privacy. The experiment shows that the proposed model performs better in terms of utility. </p> </div> </div> </div>


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Tianen Liu ◽  
Yingjie Wang ◽  
Zhipeng Cai ◽  
Xiangrong Tong ◽  
Qingxian Pan ◽  
...  

In spatiotemporal crowdsourcing applications, sensing data uploaded by participants usually contain spatiotemporal sensitive data. If application servers publish the unprocessed sensing data directly, it is easy to expose the privacy of participants. In addition, application servers usually adopt the static publishing mechanism, which is easy to produce problems such as poor timeliness and large information loss for spatiotemporal crowdsourcing applications. Therefore, this paper proposes a spatiotemporal privacy protection (STPP) method based on dynamic clustering methods to solve the privacy protection problem for crowd participants in spatiotemporal crowdsourcing systems. Firstly, the working principles of a dynamic privacy protection mechanism are introduced. Then, based on k-anonymity and l-diversity, the spatiotemporal sensitive data are anonymized. In addition, this paper designs the dynamic k-anonymity algorithm based on the previous anonymous results. Through extensive performance evaluation on real-world data, compared with existing methods, the proposed STPP algorithm could effectively solve the problem of poor timeliness and improve the privacy protection level while reducing the information loss of sensing data.


2016 ◽  
Vol 12 (12) ◽  
pp. 4601-4610 ◽  
Author(s):  
D. Palanikkumar ◽  
S. Priya ◽  
S. Priya

Privacy preservation is the data mining technique which is to be applied on the databases without violating the privacy of individuals. The sensitive attribute can be selected from the numerical data and it can be modified by any data modification technique. After modification, the modified data can be released to any agency. If they can apply data mining techniques such as clustering, classification etc for data analysis, the modified data does not affect the result. In privacy preservation technique, the sensitive data is converted into modified data using S-shaped fuzzy membership function. K-means clustering is applied for both original and modified data to get the clusters. t-closeness requires that the distribution of sensitive attribute in any equivalence class is close to the distribution of the attribute in the overall table. Earth Mover Distance (EMD) is used to measure the distance between the two distributions should be no more than a threshold t. Hence privacy is preserved and accuracy of the data is maintained.


2021 ◽  
Author(s):  
K Anand ◽  
A. Vijayaraj ◽  
M. Vijay Anand

Abstract The necessity of security in the cloud system increases day by day in which the data controllers harvest the rising personal and sensitive data volume.The cloud has some unprotected private data as well as data that has been outsourced for public access, which is crucial for cloud security statements. An advanced legal data protection constraint is required due to the resultant of repeated data violations. While dealing with sensitive data, most of the existing techniques failed to handle optimal privacy and different studies were performed to take on cloud privacy preservation. Hence, the novel model of privacy preservation in the cloud and artificial intelligence (AI) techniques were used to tackle these challenges. These AI methods are insight-driven, strategic, and more efficient organizations in cloud computing. However, the cost savings, agility, higher flexibility businesses are offered with cloud computing by data hosting. Data cleansing and restoration are the two major steps involved in the proposed privacy replica. In this study, we proposed Chaotic chemotaxis and Gaussian mutation-based Bacterial Foraging Optimization with genetic crossover operation (CGBFO- GC) algorithm for optimal key generation. Deriving the multi-objective function parameters namely data preservation ratio, hiding ratio, and modification degree that accomplishes optimal key generation using CGBFO- GC algorithm. Ultimately, the proposed CGBFO- GC algorithm provides more efficient performance results in terms of cloud security than an existing method such as SAS-DPSO, CDNNCS, J-SSO, and GC.


2021 ◽  
pp. 473-489
Author(s):  
Minfeng Qi ◽  
Ziyuan Wang ◽  
Fan Wu ◽  
Rob Hanson ◽  
Shiping Chen ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. 82-91
Author(s):  
Suraj Krishna Patil ◽  
Sandipkumar Chandrakant Sagare ◽  
Alankar Shantaram Shelar

Privacy is the key factor to handle personal and sensitive data, which in large chunks, is stored by database management systems (DBMS). It provides tools and mechanisms to access and analyze data within it. Privacy preservation converts original data into some unknown form, thus protecting personal and sensitive information. Different access control mechanisms such as discretionary access control, mandatory access control is used in DBMS. However, they hardly consider purpose and role-based access control in DBMS, which incorporates policy specification and enforcement. The role based access control (RBAC) regulates the access to resources based on the roles of individual users. Purpose based access control (PuBAC) regulates the access to resources based on purpose for which data can be accessed. It regulates execution of queries based on purpose. The PuRBAC system uses the policies of both, i.e. PuBAC and RBAC, to enforce within RDBMS.


Sign in / Sign up

Export Citation Format

Share Document