Enhanced thermoelectric properties in nanowires of InAs modulated with multiple-stub structures

2019 ◽  
Vol 9 (5) ◽  
pp. 498-502
Author(s):  
Changning Pan ◽  
Jun He ◽  
Zhiming Liu ◽  
Kaixing Shi

The thermoelectric properties of InAs nanowires modulated with the multiple-stub structures are studied using the scattering-matrix method. Owing to the very large surface-to-volume ratio, both the phonon and electron transport sensitively depend on the geometric structure. Carrier energy filtering which locally distorts electronic density of states strongly enhances the thermopower. Thus optimized thermopower, together with the significant reduction of the phonon thermal conductance, yields the high thermoelectric figure of merit ZT to 0.3∼1.9.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Saeideh Ramezani Akbarabadi ◽  
Mojtaba Madadi Asl

The thermoelectric properties of zigzag graphene nanoribbons (ZGNRs) are sensitive to chemical modification. In this study, we employed density functional theory (DFT) combined with the nonequilibrium green’s function (NEGF) formalism to investigate the thermoelectric properties of a ZGNR system by impurity substitution of single and double nitrogen (N) atoms into the edge of the nanoribbon. N-doping changes the electronic transmission probability near the Fermi energy and suppresses the phononic transmission. This results in a modified electrical conductance, thermal conductance, and thermopower. Ultimately, simultaneous increase of the thermopower and suppression of the electron and phonon contributions to the thermal conductance leads to the significant enhancement of the figure of merit in the perturbed (i.e., doped) system compared to the unperturbed (i.e., nondoped) system. Increasing the number of dopants not only changes the nature of transport and the sign of thermopower but also further suppresses the electron and phonon contributions to the thermal conductance, resulting in an enhanced thermoelectric figure of merit. Our results may be relevant for the development of ZGNR devices with enhanced thermoelectric efficiency.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 819
Author(s):  
Dedi ◽  
Ping-Chung Lee ◽  
Pai-Chun Wei ◽  
Yang-Yuan Chen

The discovery of topological insulators (TIs) has motivated detailed studies on their physical properties, especially on their novel surface states via strong spin–orbit interactions. However, surface-state-related thermoelectric properties are rarely reported, likely because of the involvement of their bulk-dominating contribution. In this work, we report thermoelectric studies on a TI bismuth selenide (Bi2Se3) nanowire (NW) that exhibit a larger surface/volume ratio. Uniform single-crystalline TI Bi2Se3 NWs were successfully synthesized using a stress-induced growth method. To achieve the study of the thermoelectric properties of a nanowire (NW), including electrical conductivity (σ), Seebeck coefficient (S), and thermal conductivity (κ), a special platform for simultaneously performing all measurements on a single wire was designed. The properties of σ, S, and κ of a 200 nm NW that was well precharacterized using transmission electron microscope (TEM) measurements were determined using the four-probe method, the two-probe EMF across ∇T measurement, and the 3ω technique, respectively. The integrated TE properties represented by the figure of merit ZT (S2σT/κ) were found to be in good agreement with a theoretical study of Bi2Se3 NW.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Shengnan Zhang ◽  
Shenghui Yang ◽  
Guangyu Jiang ◽  
Junjie Shen ◽  
Tiejun Zhu ◽  
...  

AbstractAgSbTe2 is the critical component in both LAST-m and TAGS-x system, which are two state-of-the-art mid-temperature thermoelectric bulk nanocomposites. By adjusting the Ag2Te/Sb2Te3 ratio, Sb2Te3 and Ag2Te precipitated samples were obtained with x = 0.68 to 0.74 and x = 0.84 to 0.90 (x as in (Ag2Te)x/2(Sb2Te3)1-x/2), respectively. The single phased AgSbTe2 was obtained with the x value of 0.78 and 0.81, which is consistent of the previous results on the phase diagram of (Ag2Te)x(Sb2Te3)1-x system. Comparing the effect of the two different precipitates, Ag2Te are much effective for the improvements of thermoelectric properties in AgSbTe2 nanocomposites. Utilizing the high-resolution transmission electron microscopy, Ag2Te was observed as nanodots and nano-lamellae embedded in the AgSbTe2 matrix, which can be related to the energy filtering effect for the increase of Seebeck coefficient. The relationship among the composition, microstructure and thermoelectric properties was systematically studied. It can be noticed that the thermoelectric properties of AgSbTe2 system are very sensitive to the composition, especially at low temperature. The maximum figure of merit ZT value of 1.53 was obtained at 500 K for Ag0.84Sb1.16Te2.16 with 40% increase comparing with the single phased sample.


2021 ◽  
Vol 9 ◽  
Author(s):  
Saeideh Ramezani Akbarabadi ◽  
Mojtaba Madadi Asl

Transport properties of molecular junctions are prone to chemical or conformational modifications. Perturbation of the molecule-electrode coupling with anchoring groups or functionalization of the molecule with side groups is a well-characterized method to modulate the thermoelectric properties of molecular junctions. In this study, we used wide-band approximation combined with the non-equilibrium Green’s function (NEGF) formalism to inspect conductance, thermopower and figure of merit of an anthracene molecule coupled to gold (Au) electrodes. To provide a comparative study, three different anchoring groups were used, i.e., thiol, isocyanide and cyanide. The molecule was then perturbed with the amine side group in two positions to explore the interplay between anchoring groups and the side group. We showed that the introduction of side group alters transmission probability near the Fermi energy where transmission peaks are shifted relative to the Fermi level compared to the unperturbed molecule (i.e., without side group), ultimately leading to modified electrical and thermoelectric properties. The greatest value of electrical conductance was achieved when the side-group-perturbed molecule was anchored with isocyanide, whereas the thiol-terminated molecule perturbed with the side group yielded the greatest value of thermal conductance. We found that the Wiedemann-Franz law is violated in the Au-anthracene-Au device. Furthermore, the highest thermopower and figure of merit were attained in the cyanide-terminated perturbed molecule. Our results indicate that charge donating/accepting character of the anchoring group and its interplay with the side group position can modify temperature dependency of conductance, thermopower and figure of merit which is in agreement with experimental findings in organic molecular junctions. Such modifications may potentially contribute to the understanding of emerging conductance-based memory devices designed to mimic the behavior of brain-like synapses.


2019 ◽  
Vol 16 ◽  
Author(s):  
Mohammad Reza Niazian ◽  
Laleh Farhang Matin ◽  
Mojtaba Yaghobi ◽  
Amir Ali Masoudi

Background: Recently, molecular electronics have attracted the attention of many researchers, both theoretically and applied electronics.Nanostructures have significant thermal properties, which is why they are considered as good options for designing a new generation of integrated electronic devices. Objective: In this paper, the focus is on the thermoelectric properties of the molecular junction points with the electrodes. Also, the influence of the number of atom contacts was investigated on the thermoelectric properties of molecule located between two electrodes metallic.Therefore, the thermoelectric characteristics of the B12 N12 molecule are investigated. Methods: For this purpose, the Green’s function theory as well as mapping technique approach with the wide-band approximation and also the inelastic behaviour is considered for the electron-phonon interactions. Results & Conclusion: Results & Conclusion:It is observed that the largest values of the total part of conductance as well as its elastic (G(e,n)max) depends on the number of atom contacts and are arranged as: G(e,1)max>G(e,4)max>G(e,6)max. Furthermore, the largest values of the electronic thermal conductance, i.e. Kpmax is seen to be in the order of K(p,4)max < K(p,1)max < K(p,6)max that the number of main peaks increases in four-atom contacts at (E<Ef). Furthermore, it is represented that the thermal conductance shows an oscillatory behavior which is significantly affected by the number of atom contacts.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3448
Author(s):  
Francisco Arturo López Cota ◽  
José Alonso Díaz-Guillén ◽  
Oscar Juan Dura ◽  
Marco Antonio López de la Torre ◽  
Joelis Rodríguez-Hernández ◽  
...  

This contribution deals with the mechanochemical synthesis, characterization, and thermoelectric properties of tetrahedrite-based materials, Cu12-xMxSb4S13 (M = Fe2+, Zn2+, Cd2+; x = 0, 1.5, 2). High-energy mechanical milling allows obtaining pristine and substituted tetrahedrites, after short milling under ambient conditions, of stoichiometric mixtures of the corresponding commercially available binary sulfides, i.e., Cu2S, CuS, Sb2S3, and MS (M = Fe2+, Zn2+, Cd2+). All the target materials but those containing Cd were obtained as single-phase products; some admixture of a hydrated cadmium sulfate was also identified by XRD as a by-product when synthesizing Cu10Cd2Sb4S13. The as-obtained products were thermally stable when firing in argon up to a temperature of 350–400 °C. Overall, the substitution of Cu(II) by Fe(II), Zn(II), or Cd(II) reduces tetrahedrites’ thermal and electrical conductivities but increases the Seebeck coefficient. Unfortunately, the values of the thermoelectric figure of merit obtained in this study are in general lower than those found in the literature for similar samples obtained by other powder processing methods; slight compositional changes, undetected secondary phases, and/or deficient sintering might account for some of these discrepancies.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


1998 ◽  
Vol 545 ◽  
Author(s):  
Ke-Feng Cai ◽  
Ce-Wen Nan ◽  
Xin-Min Min

AbstractB4C ceramics doped with various content of Si (0 to 2.03 at%) are prepared via hot pressing. The composition and microstructure of the ceramics are characterized by means of XRD and EPMA. Their electrical conductivity and Seebeck coefficient of the samples are measured from room temperature up to 1500K. The electrical conductivity increases with temperature, and more rapidly after 1300K; the Seebeck coefficient of the ceramics also increases with temperature and rises to a value of about 320μVK−1. The value of the figure of merit of Si-doped B4C rises to about 4 × 10−4K−1 at 1500K.


Sign in / Sign up

Export Citation Format

Share Document