scholarly journals Meta-cognitive judgements of change detection predict change blindness

2021 ◽  
Vol 21 (9) ◽  
pp. 2158
Author(s):  
Adam Barnas ◽  
Emily Ward
2021 ◽  
Vol 11 ◽  
Author(s):  
Wang Xiang

To investigate whether implicit detection occurs uniformly during change blindness with single or combination feature stimuli, and whether implicit detection is affected by exposure duration and delay, two one-shot change detection experiments are designed. The implicit detection effect is measured by comparing the reaction times (RTs) of baseline trials, in which stimulus exhibits no change and participants report “same,” and change blindness trials, in which the stimulus exhibits a change but participants report “same.” If the RTs of blindness trials are longer than those of baseline trials, implicit detection has occurred. The strength of the implicit detection effect was measured by the difference in RTs between the baseline and change blindness trials, where the larger the difference, the stronger the implicit detection effect. In both Experiments 1 and 2, the results showed that the RTs of change blindness trials were significantly longer than those of baseline trials. Whether under set size 4, 6, or 8, the RTs of the change blindness trials were significantly longer than those in the baseline trials. In Experiment 1, the difference between the baseline trials’ RTs and change blindness trials’ RTs of the single features was significantly larger than that of the combination features. However, in Experiment 2, the difference between the baseline trials’ RTs and the change blindness trials’ RTs of single features was significantly smaller than that of the combination features. In Experiment 1a, when the exposure duration was shorter, the difference between the baseline and change blindness trials’ RTs was smaller. In Experiment 2, when the delay was longer, the difference between the two trials’ RTs was larger. These results suggest that regardless of whether the change occurs in a single or a combination of features and whether there is a long exposure duration or delay, implicit detection occurs uniformly during the change blindness period. Moreover, longer exposure durations and delays strengthen the implicit detection effect. Set sizes had no significant impact on implicit detection.


2006 ◽  
Vol 16 (20) ◽  
pp. 2066-2072 ◽  
Author(s):  
Leila Reddy ◽  
Rodrigo Quian Quiroga ◽  
Patrick Wilken ◽  
Christof Koch ◽  
Itzhak Fried

2000 ◽  
Author(s):  
Brian J. Scholl ◽  
Daniel J. Simons ◽  
Daniel T. Levin

2003 ◽  
Vol 14 (2) ◽  
pp. 91-99 ◽  
Author(s):  
P.U. Tse ◽  
D.L. Sheinberg ◽  
N.K. Logothetis

We describe a new method for mapping spatial attention that reveals a pooling of attention in the hemifield opposite a peripheral flash. Our method exploits the fact that a brief full-field blank can interfere with the detection of changes in a scene that occur during the blank. Attending to the location of a change, however, can overcome this change blindness, so that changes are detected. The likelihood of detecting a new element in a scene therefore provides a measure of the occurrence of attention at that element's location. Using this measure, we mapped how attention changes in response to a task-irrelevant peripheral cue. Under conditions of visual fixation, change detection was above chance across the entire visual area tested. In addition, a “hot spot” of attention (corresponding to near-perfect change detection) elongated along the cue-fixation axis, such that performance improved not only at the cued location but also in the opposite hemifield.


2006 ◽  
Vol 18 (12) ◽  
pp. 2108-2129 ◽  
Author(s):  
Gilles Pourtois ◽  
Michael De Pretto ◽  
Claude-Alain Hauert ◽  
Patrik Vuilleumier

People often remain “blind” to visual changes occurring during a brief interruption of the display. The processing stages responsible for such failure remain unresolved. We used event-related potentials to determine the time course of brain activity during conscious change detection versus change blindness. Participants saw two successive visual displays, each with two faces, and reported whether one of the faces changed between the first and second displays. Relative to blindness, change detection was associated with a distinct pattern of neural activity at several successive processing stages, including an enhanced occipital P1 response and a sustained frontal activity (CNV-like potential) after the first display, before the change itself. The amplitude of the N170 and P3 responses after the second visual display were also modulated by awareness of the face change. Furthermore, a unique topography of event-related potential activity was observed during correct change and correct no-change reports, but not during blindness, with a recurrent time course in the stimulus sequence and simultaneous sources in the parietal and temporo-occipital cortex. These results indicate that awareness of visual changes may depend on the attentional state subserved by coordinated neural activity in a distributed network, before the onset of the change itself.


2012 ◽  
Vol 24 (2) ◽  
pp. 337-350 ◽  
Author(s):  
Álvaro Darriba ◽  
Paula Pazo-Álvarez ◽  
Almudena Capilla ◽  
Elena Amenedo

Despite the importance of change detection (CD) for visual perception and for performance in our environment, observers often miss changes that should be easily noticed. In the present study, we employed time–frequency analysis to investigate the neural activity associated with CD and change blindness (CB). Observers were presented with two successive visual displays and had to look for a change in orientation in any one of four sinusoid gratings between both displays. Theta power increased widely over the scalp after the second display when a change was consciously detected. Relative to no-change and CD, CB was associated with a pronounced theta power enhancement at parietal-occipital and occipital sites and broadly distributed alpha power suppression during the processing of the prechange display. Finally, power suppressions in the beta band following the second display show that, even when a change is not consciously detected, it might be represented to a certain degree. These results show the potential of time–frequency analysis to deepen our knowledge of the temporal curse of the neural events underlying CD. The results further reveal that the process resulting in CB begins even before the occurrence of the change itself.


2003 ◽  
Vol 40 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Mika Koivisto ◽  
Antti Revonsuo

Sign in / Sign up

Export Citation Format

Share Document