Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO

2021 ◽  
pp. 1-45
Author(s):  
Juncong Li ◽  
Zhiping Wen ◽  
Xiuzhen Li ◽  
Yuanyuan Guo

AbstractInterdecadal variations of the relationship between El Niño-Southern Oscillation (ENSO) and the Indo-China Peninsula (ICP) surface air temperature (SAT) in winter are investigated in the study. Generally, there exists a positive correlation between them during 1958–2015 because the ENSO-induced anomalous western North Pacific anticyclone (WNPAC) is conducive to pronounced temperature advection anomalies over the ICP. However, such correlation is unstable in time, having experienced a high-to-low transition around the mid-1970s and a recovery since the early-1990s. This oscillating relationship is owing to the anomalous WNPAC intensity in different decades. During the epoch of high correlation, the anomalous WNPAC and associated southwesterly winds over the ICP are stronger, which brings amounts of warm temperature advections and markedly heats the ICP. Differently, a weaker WNPAC anomaly and insignificant ICP SAT anomalies are the circumstances for the epoch of low correlation. It is also found that substantial southwesterly wind anomalies over the ICP related to the anomalous WNPAC occur only when large sea surface temperature (SST) anomalies over the northwest Indian Ocean (NWIO) coincide with ENSO (namely when the ENSO-NWIO SST connection is strong). The NWIO SST anomalies are capable of driving favorable atmospheric circulation that effectively alters ICP SAT and efficiently modulates the ENSO-ICP SAT correlation, which is further supported by numerical simulations utilizing the Community Atmospheric Model, version 4 (CAM4). This paper emphasizes the non-stationarity of the ENSO-ICP SAT relationship and also uncovers the underlying modulation factors, which has important implications for the seasonal prediction of the ICP temperature.

2006 ◽  
Vol 19 (13) ◽  
pp. 3279-3293 ◽  
Author(s):  
X. Quan ◽  
M. Hoerling ◽  
J. Whitaker ◽  
G. Bates ◽  
T. Xu

Abstract In this study the authors diagnose the sources for the contiguous U.S. seasonal forecast skill that are related to sea surface temperature (SST) variations using a combination of dynamical and empirical methods. The dynamical methods include ensemble simulations with four atmospheric general circulation models (AGCMs) forced by observed monthly global SSTs from 1950 to 1999, and ensemble AGCM experiments forced by idealized SST anomalies. The empirical methods involve a suite of reductions of the AGCM simulations. These include uni- and multivariate regression models that encapsulate the simultaneous and one-season lag linear connections between seasonal mean tropical SST anomalies and U.S. precipitation and surface air temperature. Nearly all of the AGCM skill in U.S. precipitation and surface air temperature, arising from global SST influences, can be explained by a single degree of freedom in the tropical SST field—that associated with the linear atmospheric signal of El Niño–Southern Oscillation (ENSO). The results support previous findings regarding the preeminence of ENSO as a U.S. skill source. The diagnostic methods used here exposed another skill source that appeared to be of non-ENSO origins. In late autumn, when the AGCM simulation skill of U.S. temperatures peaked in absolute value and in spatial coverage, the majority of that originated from SST variability in the subtropical west Pacific Ocean and the South China Sea. Hindcast experiments were performed for 1950–99 that revealed most of the simulation skill of the U.S. seasonal climate to be recoverable at one-season lag. The skill attributable to the AGCMs was shown to achieve parity with that attributable to empirical models derived purely from observational data. The diagnostics promote the interpretation that only limited advances in U.S. seasonal prediction skill should be expected from methods seeking to capitalize on sea surface predictors alone, and that advances that may occur in future decades could be readily masked by inherent multidecadal fluctuations in skill of coupled ocean–atmosphere systems.


2021 ◽  
pp. 1-68
Author(s):  
Jing Ming ◽  
Jianqi Sun

AbstractThis study investigates the relationship between the central tropical Pacific (CTP) sea surface temperature (SST) and the surface air temperature (SAT) variability un-related to canonical El Niño-Southern Oscillation (ENSO) over mid-to-high latitude Eurasia during boreal summers over the past half-century. The results show that their relationship experienced a decadal shift around the early 1980s. Before the early 1980s, the Eurasian SAT-CTP SST connection was weak; after that time, the relationship became stronger, and the SAT anomalies exhibited a significant wave-like pattern over Eurasia. Such a decadal change in the Eurasian SAT-CTP SST relationship could be attributed to decadal changes in the mean state and variability of CTP SST. The warmer mean state and enhanced SST variability after the early 1980s reinforced the convective activities over the tropical Pacific, leading to significantly anomalous divergence/convergence and Rossby wave sources over the North Pacific. This outcome further excited the wave train propagating along the Northern Hemisphere zonal jet stream to northern Eurasia and then affected the surface heat fluxes and atmospheric circulations over the region, resulting in wave-like SATs over Eurasia. However, during the period before the early 1980s, the CTP SST had a weak impact on the North Pacific atmospheric circulation and was consequently not able to excite the wave train pattern to impact the Eurasian atmospheric circulation and SATs. The physical processes linking the CTP SST and Eurasian SAT are further confirmed by numerical simulations. The results of this study are valuable to understanding the variability of summer Eurasian SATs.


MAUSAM ◽  
2021 ◽  
Vol 58 (3) ◽  
pp. 345-350
Author(s):  
O. P. SINGH

In this paper the relationships between the Arabian Sea warm pool intensity, Southern Oscillation (SO) and the monsoon onset have been discussed. The results show that the peak intensity of the warm pool in the Lakshadweep Sea is significantly correlated with the monsoon onset date over Kerala. Warmer Sea Surface Temperature (SST) anomalies in the warm pool region during April-May are associated with delayed monsoon onset over Kerala though the cause-and-effect relationship is not known. The Southern Oscillation Index (SOI) of March can provide predictive indications of the peak intensity of the warm pool which, normally occurs during April.


2019 ◽  
Vol 32 (6) ◽  
pp. 1693-1706 ◽  
Author(s):  
Zhen-Qiang Zhou ◽  
Renhe Zhang ◽  
Shang-Ping Xie

Abstract Year-to-year variability of surface air temperature (SAT) over central India is most pronounced in June. Climatologically over central India, SAT peaks in May, and the transition from the hot premonsoon to the cooler monsoon period takes place around 9 June, associated with the northeastward propagation of intraseasonal convective anomalies from the western equatorial Indian Ocean. Positive (negative) SAT anomalies during June correspond to a delayed (early) Indian summer monsoon onset and tend to occur during post–El Niño summers. On the interannual time scale, positive SAT anomalies of June over central India are associated with positive SST anomalies over both the equatorial eastern–central Pacific and Indian Oceans, representing El Niño effects in developing and decay years, respectively. Although El Niño peaks in winter, the correlations between winter El Niño and Indian SAT peak in the subsequent June, representing a post–El Niño summer capacitor effect associated with positive SST anomalies over the north Indian Ocean. These results have important implications for the prediction of Indian summer climate including both SAT and summer monsoon onset over central India.


2019 ◽  
Vol 32 (21) ◽  
pp. 7575-7594 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang ◽  
Botao Zhou

Abstract This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.


2013 ◽  
Vol 26 (5) ◽  
pp. 1575-1594 ◽  
Author(s):  
Catrin M. Mills ◽  
John E. Walsh

Abstract The Pacific decadal oscillation (PDO) is an El Niño–Southern Oscillation (ENSO)-like climate oscillation that varies on multidecadal and higher-frequency scales, with a sea surface temperature (SST) dipole in the Pacific. This study addresses the seasonality, vertical structure, and across-variable relationships of the local North Pacific and downstream North American atmospheric signal of the PDO. The PDO-based composite difference fields of 500-mb geopotential height, surface air temperature, sea level pressure, and precipitation vary not only across seasons, but also from one calendar month to another within a season, although month-to-month continuity is apparent. The most significant signals occur in western North America and in the southeastern United States, where a positive PDO is associated with negative heights, consistent with underlying temperatures in the winter. In summer, a negative precipitation signal in the southeastern United States associated with a positive PDO phase is consistent with a ridge over the region. When an annual harmonic is fit to the 12 monthly surface air temperature differences at each grid point, the PDO temperature signal peaks in winter in most of North America, while a peak in summer occurs in the southeastern United States. Approximately 25% of the variance of the PDO index is accounted for by ENSO. Atmospheric composite differences based on a residual (ENSO linearly removed) PDO index have many similarities to those of the full PDO signal.


Sign in / Sign up

Export Citation Format

Share Document