scholarly journals Water Mass Export from Drake Passage to the Atlantic, Indian, and Pacific Oceans: A Lagrangian Model Analysis

2005 ◽  
Vol 35 (7) ◽  
pp. 1206-1222 ◽  
Author(s):  
Yann Friocourt ◽  
Sybren Drijfhout ◽  
Bruno Blanke ◽  
Sabrina Speich

Abstract The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.

2007 ◽  
Vol 20 (13) ◽  
pp. 3106-3130 ◽  
Author(s):  
R. J. Murray ◽  
Nathaniel L. Bindoff ◽  
C. J. C. Reason

Abstract A near-global ocean model with resolution enhanced in the southern Indian Ocean has been spun up to seasonal equilibrium and then driven by NCEP–NCAR reanalysis 1 monthly mean forcings and Hadley SSTs over the period 1948–2002. The aim was to simulate changes in the subsurface properties observed in hydrographic surveys at 32°S in the Indian Ocean in 1965, 1987, and 2002. These surveys showed a zonally averaged cooling on isopycnals of 0.5° and 0.3°C in mode and intermediate waters between 1965 and 1987 and a warming of the mode water coupled with a continued cooling of the intermediate water between 1987 and 2002. The major changes in isopycnal depth and temperature modeled in this study were confined to the mode water and were qualitatively similar to those observed but concentrated in a lower density class and in the eastern half of the section. The dominant changes here were multidecadal, with maximum temperatures on the σθ = 26.7 kg m−3 isopycnal being reached in 1968 and minimum temperatures in 1990. The simulations showed a propagation of interannual anomalies toward the section from a region of deep late winter mixed layers in the southeast Indian Ocean within a period of several years. Surface temperatures in this region were lowest in the 1960s and highest in the late 1980s. Temperatures on isopycnals showed the opposite variation, consistent with SST having the controlling effect on mixed layer density and depth. Isopycnal depths within the mode water were strongly correlated with temperature, implying a redistribution of mode water density classes, the greatest volume of mode water being produced in a higher density class (σθ = 26.8–27.0 kg m–3) during the period of cooler surface forcing in the 1960s and 1970s than during the warmer period following (σθ = 26.6–26.8 kg m–3).


2007 ◽  
Vol 20 (13) ◽  
pp. 3210-3228 ◽  
Author(s):  
J. Stuart Godfrey ◽  
Rui-Jin Hu ◽  
Andreas Schiller ◽  
R. Fiedler

Abstract Annual mean net heat fluxes from ocean general circulation models (OGCMs) are systematically too low in the tropical Indian Ocean, compared to observations. In the models, only some of the geostrophic inflow replacing southward Ekman outflow is colder than the minimum sea surface temperature (MINSST). Observed heat fluxes imply that much more inflow is colder than MINSST. Since inflow below MINSST can only join the surface Ekman transport after diathermal warming, the OGCMs must underestimate diathermal effects. A crude analog of the annual mean Indian Ocean heat budget was generated, using a rectangular box model with a deep “Indo–Pacific” gap at 7°–10°S in its eastern side. Wind stress was zonal and proportional to the Coriolis parameter, so Ekman transport was spatially constant and equaled Sverdrup transport. For three experiments, zonally integrated Ekman transport was steady and southward at 10 Sv (Sv ≡ 106 m3 s−1). In steady state, a 10 Sv “Indonesian Throughflow” fed a northward western boundary current of 10 Sv, which turned eastward along the northern boundary at 10°N to feed the southward Ekman transport. Most diathermal mixing occurred within an intense eddy in the northwest corner. Some of the geostrophic inflow was at temperatures colder than MINSST (found at the northeast corner of the eddy); it must warm to MINSST via diathermal mixing. Northern boundary upwelling exceeded the 10-Sv Ekman transport. The excess warms as it recirculates around the eddy, apparently supplying the heat to warm inflow below MINSST. In an experiment using the “flux-corrected transport” (FCT) scheme, diathermal mixing occurred in the strongly sheared currents around the eddy. However the Richardson number never became low enough to drive strong diathermal mixing, perhaps because (like that of other published models) the present model’s vertical resolution was too coarse. In three experiments, the dominant mixing was caused by horizontal diffusion, spurious convective overturn, and numerical mixing invoked by the FCT scheme, respectively. All three mixing mechanisms are physically suspect; such model problems (if widespread) must be resolved before the mismatch between observed and modeled heat fluxes can be addressed. However, the fact that the density profile at the western boundary must be hydrostatically stable places a lower limit on the area-integrated heat fluxes. Results from the three main experiments—and from many published OGCMs—are quite close to this lower limit.


2016 ◽  
Vol 29 (17) ◽  
pp. 6085-6108 ◽  
Author(s):  
Toshiaki Shinoda ◽  
Weiqing Han ◽  
Tommy G. Jensen ◽  
Luis Zamudio ◽  
E. Joseph Metzger ◽  
...  

Abstract Previous studies indicate that equatorial zonal winds in the Indian Ocean can significantly influence the Indonesian Throughflow (ITF). During the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, two strong MJO events were observed within a month without a clear suppressed phase between them, and these events generated exceptionally strong ocean responses. Strong eastward currents along the equator in the Indian Ocean lasted more than one month from late November 2011 to early January 2012. The influence of these unique MJO events during the field campaign on ITF variability is investigated using a high-resolution (1/25°) global ocean general circulation model, the Hybrid Coordinate Ocean Model (HYCOM). The strong westerlies associated with these MJO events, which exceed 10 m s−1, generate strong equatorial eastward jets and downwelling near the eastern boundary. The equatorial jets are realistically simulated by the global HYCOM based on the comparison with the data collected during the field campaign. The analysis demonstrates that sea surface height (SSH) and alongshore velocity anomalies at the eastern boundary propagate along the coast of Sumatra and Java as coastal Kelvin waves, significantly reducing the ITF transport at the Makassar Strait during January–early February. The alongshore velocity anomalies associated with the Kelvin wave significantly leads SSH anomalies. The magnitude of the anomalous currents at the Makassar Strait is exceptionally large because of the unique feature of the MJO events, and thus the typical seasonal cycle of ITF could be significantly altered by strong MJO events such as those observed during the CINDY/DYNAMO field campaign.


2021 ◽  
Author(s):  
Wei Wu ◽  
Yan Du ◽  
Yu-Kun Qian ◽  
Xuhua Cheng ◽  
Tianyu Wang ◽  
...  

<p>Using the Gauss–Markov decomposition method, this study investigates the mean structure and seasonal variation of the tropical gyre in the Indian Ocean based on the observations of surface drifters. In the climatological mean, the clockwise tropical gyre consists of the equatorial Wyrtki Jets (WJs), the South Equatorial Current (SEC), and the eastern and western boundary currents. This gyre system redistributes the water mass over the entire tropical Indian Ocean basin. Its variations are associated with the monsoon transitions, featuring a typical clockwise pattern in the boreal spring and fall seasons. The relative importance of the geostrophic and Ekman components of the surface currents as well as the role of eddy activity were further examined. It was found that the geostrophic component dominates the overall features of the tropical gyre, including the SEC meandering, the broad eastern boundary current, and the axes of the WJs in boreal spring and fall, whereas the Ekman component strengthens the intensity of the WJs and SEC. Eddies are active over the southeastern tropical Indian Ocean and transport a warm and fresh water mass westward, with direct impact on the southern branch of the tropical gyre. In particular, the trajectories of drifters reveal that during strong Indian Ocean Dipole or El Niño-Southern Oscillation events, long-lived eddies were able to reach the southwestern Indian Ocean with a moving speed close to that of the first baroclinic Rossby waves.</p>


The linearized theory of unsteady wind-driven currents in a horizontally stratified ocean is applied to the northern part of the Indian Ocean. This is argued to be a suitable area for detailed application and evaluation of the theory because (i) the theory has certain advantages near the equator (for example, influence of detailed bottom topography is reduced, thermoclines are somewhat less variable in character, and speeds of baroclinic propagation are enhanced relative to current speeds), and (ii) the wind-stress pattern undergoes a well marked change with onset of the Southwest Monsoon, a change to which the pattern of currents shows a more or less identifiable, and rather quick, response which may be compared with theoretical predictions. Response is predicted to be found principally in two modes as far as vertical distribution of current is concerned; to a somewhat lesser extent in the barotropic mode with uniform distribution, and to a somewhat greater extent in the first baroclinic mode with current distribution as in figure 7, concentrated predominantly in the uppermost 200 m (see Appendix for detailed analysis of the modes appropriate to the equatorial Indian Ocean). Of particular interest is the strong Somali Current, that flows northward along the Somali coast only during the northern hemisphere summer (after monsoon onset) but during that time is comparable in volume flow (about 5 x 107 m3/s) to other western boundary currents such as the Gulf Stream. Detailed discussion of the application of linearized theory to equatorial oceans with western boundaries leads the author to conclude, both in the barotropic (§ 2) and baroclinic (§ 4) cases, that c wave packets5 of current pattern reaching such a boundary deposit the c flux5 they carry (velocity normal to the boundary integrated along it) in a boundary current which rather rapidly takes a rather concentrated form. Linear theory with horizontal transport neglected indicates that such flux requires of the order of 10 days to become concentrated in a current of 100 km width, but that thereafter it continues to become still thinner; however, with horizontal transport included, a steady-state finite thickness of current is reached. In reality, nonlinear effects would play an important additional part in limiting steady-state current thickness to the observed 100 km or thereabouts, but the time scale required to bring the thickness down to this value is probably given reasonably well by linear theory. Calculations for a zonal distribution of winds, which rather rapidly make a reversal of direction and increase of strength somewhat north of the Equator characteristic of the onset of the Southwest Monsoon, predict westward propagation of both barotropic and baroclinic wave energy at comparable speeds of the order of 1 m/s; the marked contrast here with other oceans (in the comparability of speeds) is given particularly detailed study. Calculations indicate that the barotropic signal is considerably distorted (figure 3) by the fact that low-wavenumber components reach the western boundary first. Baroclinic propagation takes the form of special planetary-wave modes concentrated near the equator (§3), of which perhaps four, delivering flux patterns depicted in figure 5, and possessing wave velocities of 0.9, 0.55, 0.4 and 0.3 m/s towards the west, are specially relevant to generation of the Somali Current. Peak surface flows in that current are predicted to be influenced about three times as much by this baroclinic propagation as by the barotropic. Theory indicates 1 month (of which two-thirds is needed for propagation of current patterns and one-third for their concentration in a boundary current) as characteristic time scale for formation of the Somali Current (see figure 6 in particular for the calculated baroclinic component) in contradistinction to the ‘decades’ predicted by the same type of theory in mid-latitude oceans (Veronis & Stommel 1956). Observations do, indeed, make clear that the time scale is not significantly more than 1 month, although the possibility that it might be still less cannot yet be decided on the basis of observational evidence. The flow is calculated as reaching 40 % of a typical maximum value (observed in August) already within 1 month of monsoon onset (May), even though no effect of wind stress acting within 500 km of the coast has been taken into account. The linearized theory predicts the current as reaching as far north as 6° N or 7°N, but nonlinear terms are generally found in computational studies (Bryan 1963; Veronis 1966) to bring about some ‘ inertial overshoot ’ in concentrated boundary currents, which may explain why the current does not in fact separate until about 9°N.


2011 ◽  
Vol 24 (21) ◽  
pp. 5652-5670 ◽  
Author(s):  
Thierry Penduff ◽  
Mélanie Juza ◽  
Bernard Barnier ◽  
Jan Zika ◽  
William K. Dewar ◽  
...  

Abstract This paper evaluates in a realistic context the local contributions of direct atmospheric forcing and intrinsic oceanic processes on interannual sea level anomalies (SLAs). A ¼° global ocean–sea ice general circulation model, driven over 47 yr by the full range of atmospheric time scales, is quantitatively assessed against altimetry and shown to reproduce most observed features of the interannual SLA variability from 1993 to 2004. Comparing this simulation with a second driven only by the climatological annual cycle reveals that the intrinsic part of the total interannual SLA variance exceeds 40% over half of the open-ocean area and exceeds 80% over one-fifth of it. This intrinsic contribution is particularly strong in eddy-active regions (more than 70%–80% in the Southern Ocean and western boundary current extensions) as predicted by idealized studies, as well as within the 20°–35° latitude bands. The atmosphere directly forces most of the interannual SLA variance at low latitudes and in most midlatitude eastern basins, in particular north of about 40°N in the Pacific. The interannual SLA variance is almost entirely due to intrinsic processes south of the Antarctic Circumpolar Current in the Indian Ocean sector, while half of this variance is forced by the atmosphere north of it. The same simulations were performed and analyzed at 2° resolution as well: switching to this laminar regime yields a comparable forced variability (large-scale distribution and magnitude) but almost suppresses the intrinsic variability. This likely explains why laminar ocean models largely underestimate the interannual SLA variance.


2015 ◽  
Vol 12 (5) ◽  
pp. 2231-2256
Author(s):  
E. Lambert ◽  
D. Le Bars ◽  
W. P. M. de Ruijter

Abstract. East of Madagascar, wind and surface buoyancy fluxes reinforce each other, leading to frontogenesis, outcrop and an eastward along-front flow: the South Indian Ocean Countercurrent (SICC). In the east the Leeuwin Current (LC) is a unique eastern boundary current which flows poleward along Australia. It is often described as a regional coastal current forced by an off-shore meridional density gradient or a sea surface slope, yet little is known of the forcing and dynamics that control these open ocean meridional gadients. To complete this understanding, we make use of both an ocean general circulation model and a conceptual two-layer model. The SICC impinges on west Australia and adds to a sea level slope and a southward geostrophic coastal jet: the Leeuwin Current. The SICC and the LC are thus dynamically connected. An observed transport maximum of the LC around 22° S is directly related to this impingement of the SICC. The circulation of the Indonesian Throughflow (ITF) through the Indian Ocean appears to be partly trapped in the upper layer north of the outcrop line and is redirected along this outcrop line to join the eastward flow of the SICC. Shutdown of the ITF in both models strongly decreases the Leeuwin Current transport and breaks the connection between the LC and SICC. In this case, most of the SICC was found to reconnect to the internal gyre circulation in the Indian Ocean. The Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current are thus dynamically coupled.


2010 ◽  
Vol 23 (13) ◽  
pp. 3720-3738 ◽  
Author(s):  
Shuanglin Li ◽  
Judith Perlwitz ◽  
Martin P. Hoerling ◽  
Xiaoting Chen

Abstract Atmospheric circulation changes during boreal winter of the second half of the twentieth century exhibit a trend toward the positive polarity of both the Northern Hemisphere annular mode (NAM) and the Southern Hemisphere annular mode (SAM). This has occurred in concert with other trends in the climate system, most notably a warming of the Indian Ocean. This study explores whether the tropical Indian Ocean warming played a role in forcing these annular trends. Five different atmospheric general circulation models (AGCMs) are forced with an idealized, transient warming of Indian Ocean sea surface temperature anomalies (SSTA); the results of this indicate that the warming contributed to the annular trend in the NH but offset the annular trend in SH. The latter result implies that the Indian Ocean warming may have partly cancelled the influence of the stratospheric ozone depletion over the southern polar area, which itself forced a trend toward the positive phase of the SAM. Diagnosis of the physical mechanisms for the annular responses indicates that the direct impact of the diabatic heating induced by the Indian Ocean warming does not account for the annular response in the extratropics. Instead, interactions between the forced stationary wave anomalies and transient eddies is key for the formation of annular structures.


2018 ◽  
Vol 48 (2) ◽  
pp. 413-434 ◽  
Author(s):  
Motoki Nagura ◽  
Michael J. McPhaden

AbstractThe number of in situ observations in the Indian Ocean has dramatically increased over the past 15 years thanks to the implementation of the Argo profiling float program. This study estimates the mean circulation in the Indian Ocean using hydrographic observations obtained from both Argo and conductivity–temperature–depth (CTD) observations. Absolute velocity at the Argo float parking depth is used so there is no need to assume a level of no motion. Results reveal previously unknown features in addition to well-known currents and water masses. Some newly identified features include the lack of an interior pathway to the equator from the southern Indian Ocean in the pycnocline, indicating that water parcels must transit through the western boundary to reach the equator. High potential vorticity (PV) intrudes from the western coast of Australia in the depth range of the Subantarctic Mode Water, which leads to a structure similar to a PV barrier. The subtropical anticyclonic gyre retreats poleward with depth, as happens in the subtropical Atlantic and Pacific. An eastward flow was found in the eastern basin along 15°S at the depth of the Antarctic Intermediate Water—a feature expected from property distributions but never before detected in velocity estimates. Meridional mass transport indicates about 10 Sv (1 Sv ≡ 106 m3 s−1) southward flow at 6°S and 18 Sv northward flow at 20°S, which results in meridional convergence of currents and thermocline depression at about 16°–20°S. These estimated absolute velocities agree well with those of an ocean reanalysis, which lends credibility to the strictly databased analysis.


Sign in / Sign up

Export Citation Format

Share Document