Effect of machining parameters on the surface finish of a metal matrix composite under dry cutting conditions

Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.

2013 ◽  
Vol 315 ◽  
pp. 113-116 ◽  
Author(s):  
T.S. Mahesh Babu ◽  
P.S. Ramkumar ◽  
Nambi Muthukrishnan

Hybrid metal matrix composite constitutes a tough metal matrix with reinforcement of at least two ceramic particulates and exhibit superior mechanical and thermal properties. The difficulties in machining metal matrix composites are obtaining good surface finish, consumption of more electrical power, involving excessive cutting forces and greater tool wear as it contain very hard ceramic particulates. This factor restrict the wide spread application of these kind of materials. Hence the study of machining characteristics and the optimization of the cutting parameters are prime importance. In this paper aluminium alloy is taken as metal matrix and the silicon carbide (SiC 10% by wt.) and boron carbide (B4C 5% by wt.) taken as ceramic reinforcement. This material is fabricated in the form of cylindrical rod using stir casting method. Turning operations are carried out in medium duty lathe using poly crystalline diamond (PCD) cutting tool insert. Taguchis design of L09orthogonal array is followed selecting three machining factors namely cutting speed, feed and depth of cut at three levels. Optimal cutting conditions are arrived by Signal-Noise ratio method with respect to surface roughness. The results are validated by (ANOVA) analysis of variance and the percentage of contribution of cutting speed, feed rate and depth of cut for better surface finish are determined and it is found that the vital parameter is feed followed by cutting speed and then by depth of cut.


2013 ◽  
Vol 685 ◽  
pp. 57-62
Author(s):  
Seyyed Pedram Shahebrahimi ◽  
Abdolrahman Dadvand

One of the most important issues in turning operations is to choose suitable parameters in order to achieve a desired surface finish. The surface finish in machining operation depends on many parameters such as workpiece material, tool material, tool coating, machining parameters, etc. The purpose of this research is to focus on the analysis of optimum cutting parameters to get the lowest surface roughness in turning Titanium alloy Ti-6Al-4V with the insert with the standard code DNMG 110404 under dry cutting condition, by the Taguchi method. The turning parameters are evaluated as cutting speed of 14, 20 and 28 m/min, feed rate of 0.12, 0.14 and 0.16 mm/rev, depth of cut of 0.3, 0.6 and 1 mm, each at three levels. The Experiment was designed using the Taguchi method and 9 experiments were conducted by this process. The results are analyzed using analysis of variance method (ANOVA). The results of analysis show that the depth of cut has a significant role to play in producing lower surface roughness that is about 63.33% followed by feed rate about 30.25%, and cutting speed has less contribution on the surface roughness. Also it was realized that with the use of the confirmation test, the surface roughness improved by 227% from its initial state.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4377 ◽  
Author(s):  
Mustafa Kuntoğlu ◽  
Abdullah Aslan ◽  
Hacı Sağlam ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin ◽  
...  

Optimization of tool life is required to tune the machining parameters and achieve the desired surface roughness of the machined components in a wide range of engineering applications. There are many machining input variables which can influence surface roughness and tool life during any machining process, such as cutting speed, feed rate and depth of cut. These parameters can be optimized to reduce surface roughness and increase tool life. The present study investigates the optimization of five different sensorial criteria, additional to tool wear (VB) and surface roughness (Ra), via the Tool Condition Monitoring System (TCMS) for the first time in the open literature. Based on the Taguchi L9 orthogonal design principle, the basic machining parameters cutting speed (vc), feed rate (f) and depth of cut (ap) were adopted for the turning of AISI 5140 steel. For this purpose, an optimization approach was used implementing five different sensors, namely dynamometer, vibration, AE (Acoustic Emission), temperature and motor current sensors, to a lathe. In this context, VB, Ra and sensorial data were evaluated to observe the effects of machining parameters. After that, an RSM (Response Surface Methodology)-based optimization approach was applied to the measured variables. Cutting force (97.8%) represented the most reliable sensor data, followed by the AE (95.7%), temperature (92.9%), vibration (81.3%) and current (74.6%) sensors, respectively. RSM provided the optimum cutting conditions (at vc = 150 m/min, f = 0.09 mm/rev, ap = 1 mm) to obtain the best results for VB, Ra and the sensorial data, with a high success rate (82.5%).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
J. Francis Xavier ◽  
B. Ravi ◽  
D. Jayabalakrishnan ◽  
Chakaravarthy Ezilarasan ◽  
V. Jayaseelan ◽  
...  

Aircraft component manufacturing sector is looking for high precision machining in aircraft components. The present work explores the operability of green manufacturing of Nimonic C263 using dry turning. Nimonic C263 is tough to turn owing to its inherent quality like low conductivity and more work hardening. Therefore, in order to improve this machined surface/integrity, the controlling factors were optimized based on desirability approach for minimum of surface roughness and flank wear during turning of this alloy using CBN insert. L27 orthogonal array was chosen to carry out the experiment. The effects of controlling factors, such as cutting speed ( V ), feed rate ( S ), and cut penetration/depth of cut ( a p ) on the outputs, were also explored. The feed rate was a major impact to affect surface finish and flank wear. The average error percentage between the experimental and RSM models for surface finish was 4.76 percent and 2.79 percent for flank wear.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


2019 ◽  
Vol 26 (4) ◽  
pp. 179-184
Author(s):  
Justyna Molenda

AbstractNowadays lot of scientific work inspired by industry companies was done with the aim to avoid the use of cutting fluids in machining operations. The reasons were ecological and human health problems caused by the cutting fluid. The most logical solution, which can be taken to eliminate all of the problems associated with the use of cooling lubricant, is dry machining. In most cases, however, a machining operation without lubricant finds acceptance only when it is possible to guarantee that the part quality and machining times achieved in wet machining are equalled or surpassed. Surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered as one of the most important parameter in industry. Today the quality of surface finish is a significant requirement for many workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. In the present study, the influence of different machining parameters on surface roughness has been analysed. Experiments were conducted for turning, as it is the most frequently used machining process in machine industry. All these parameters have been studied in terms of depth of cut (ap), feed rate (f) and cutting speed (vc). As workpiece, material steel S235 has been selected. This work presents results of research done during turning realised on conventional lathe CDS 6250 BX-1000 with severe parameters. These demonstrate the necessity of further, more detailed research on turning process results.


2017 ◽  
Vol 18 (1) ◽  
pp. 147-154
Author(s):  
Mohammad Yeakub Ali ◽  
Wan Norsyazila Jailani ◽  
Mohamed Rahman ◽  
Muhammad Hasibul Hasan ◽  
Asfana Banu

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mahir Akgün ◽  
Fuat Kara

The present work has been focused on cutting force (Fc) and analysis of machined surface in turning of AA 6061 alloy with uncoated and PVD-TiB2 coated cutting inserts. Turning tests have been conducted on a CNC turning under dry cutting conditions based on Taguchi L18 (21 × 33) array. Kistler 9257A type dynamometer and equipment have been used in measuring the main cutting force (Fc) in turning experiments. Analysis of variance (ANOVA) has been applied to define the effect levels of the turning parameters on Fc and Ra. Moreover, the mathematical models for Fc and Ra have been developed via linear and quadratic regression models. The results indicated that the best performance in terms of Fc and Ra was obtained at an uncoated insert, cutting speed of 350 m/min, feed rate of 0.1 mm/rev, and depth of cut of 1 mm. Moreover, the feed rate is the most influential parameter on Ra and Fc, with 64.28% and 54.9%, respectively. The developed mathematical models for cutting force (Fc) and surface roughness (Ra) present reliable results with coefficients of determination (R2) of 96.04% and 92.15%, respectively.


Sign in / Sign up

Export Citation Format

Share Document