A case study in human–robot collaboration in the disassembly of press-fitted components

Author(s):  
Jun Huang ◽  
Duc Truong Pham ◽  
Yongjing Wang ◽  
Mo Qu ◽  
Chunqian Ji ◽  
...  

Human–robot collaborative disassembly is an approach designed to mitigate the effects of uncertainties associated with the condition of end-of-life products returned for remanufacturing. This flexible semi-autonomous approach can also handle unpredictability in the frequency and numbers of such returns as well as variance in the remanufacturing process. This article focusses on disassembly, which is the first and arguably the most critical step in remanufacturing. The article presents a new method for disassembling press-fitted components using human–robot collaboration based on the active compliance provided by a collaborative robot. The article first introduces the concepts of human–robot collaborative disassembly and outlines the method of active compliance control. It then details a case study designed to demonstrate the proposed method. The study involved the disassembly of an automotive water pump by a collaborative industrial robot working with a human operator to take apart components that had been press-fitted together. The results show the feasibility of the proposed method.

Author(s):  
Romain Farel ◽  
Selma Kchir ◽  
Xavier Lamy ◽  
Mathieu Grossard

Automation of manufacturing process with robots is an industrial challenge, generally evaluated by the Return On Investment (ROI) that such a transformation could generate. However, the automation has a considerable cost particularly for SMEs, which makes a barrier to access and limits the motivation of facilitating the manual work of the operators, despite of nonergonomic and risky situations. In this study, supported by the European project HORSE, we went through the development of a robotic solution to assist the operator in the manufacturing. This component called programming-by-demonstration is integrated in both main categories of automation: industrial robot and collaborative robot (cobot). Both applications are tested and evaluated in a real manufacturing task (cutting cast pieces from foundry) and evaluated by the industrial end-user. The paper states on the application of the developed component, and concludes with the lesson learned.


Author(s):  
A. Rega ◽  
F. Vitolo ◽  
C. Di Marino ◽  
S. Patalano

Abstract Human–robot collaboration (HRC) solutions are replacing classic industrial robot due to the possibility of realizing more flexible production systems. Collaborative robot systems, named cobot, can work side by side with humans combining their strengths. However, obtaining an efficient HRC is not trivial; indeed, the potential advantages of the collaborative robotics increase as complexity increases. In this context, the main challenge is to design the layout of collaborative workplaces facing the facility layout problem and ensuring the safety of the human being. To move through the high number of safety standards could be very tiring and unproductive. Therefore, in this work a list of key elements, linked to reference norms and production needs, characterizing the collaborative workplace has been identified. Then, a graph-based approach has been used in order to organize and easily manage this information. The management by means graphs has facilitated the implementation of the acquired knowledge in a code, developed in Matlab environment. This code aims to help the designer in the layout organization of human–robot collaborative workplaces in standards compliance. The paper presents the optimization code, named Smart Positioner, and the operation is explained through a workflow diagram.


2021 ◽  
Vol 11 (12) ◽  
pp. 5699
Author(s):  
Nikos Dimitropoulos ◽  
Theodoros Togias ◽  
Natalia Zacharaki ◽  
George Michalos ◽  
Sotiris Makris

Seamless human–robot collaboration requires the equipping of robots with cognitive capabilities that enable their awareness of the environment, as well as the actions that take place inside the assembly cell. This paper proposes an AI-based system comprised of three modules that can capture the operator and environment status and process status, identify the tasks that are being executed by the operator using vision-based machine learning, and provide customized operator support from the robot side for shared tasks, automatically adapting to the operator’s needs and preferences. Moreover, the proposed system is able to assess the ergonomics in human–robot shared tasks and adapt the robot pose to improve ergonomics using a heuristics-based search algorithm. An industrial case study derived from the elevator manufacturing sector using a high payload collaborative robot is presented to demonstrate that collaboration efficiency can be enhanced through the use of the discussed system.


2019 ◽  
Vol 2 (2) ◽  
pp. 177-187
Author(s):  
Venessa Agusta Gogali ◽  
Fajar Muharam ◽  
Syarif Fitri

Crowdfunding is a new method in fundraising activities based online. Moreover, the level of penetration of social media to the community is increasingly high. This makes social activists and academics realize that it is important to study social media communication strategies in crowdfunding activities. There is encouragement to provide an overview of crowdfunding activities. So the author conducted a research on "Crowdfunding Communication Strategy Through Kolase.com Through Case Study on the #BikinNyata Program Through the Kolase.com Website that successfully achieved the target. Keywords: Strategic of Communication, Crowdfunding, Social Media.


Sign in / Sign up

Export Citation Format

Share Document