Comparative investigations of cryo-treated and untreated inserts on machinability of AISI 1050 by using response surface methodology, ANOVA and Taguchi design

Author(s):  
Şehmus Baday ◽  
Onur Ersöz

This study aims to focus on the machinability of the AISI 1050 workpieces with cutting inserts, treated under deep cryogenic heat (−146 °C), and with untreated ones, and to investigate the optimization of cutting parameters and heat treatment conditions for surface roughness and cutting force by using Taguchi mixed design and Response Surface Methodology (RSM). The machining experiment was performed on a CNC lathe with machining parameters such as three feed rates, three cutting speeds and a constant depth of cut under dry condition and with heat treatment condition. As is known, Taguchi design L18 (32 21) consists of three factors; cutting parameters with each one of three levels and heat treatment condition with two levels. The results of machining tests were evaluated considering surface roughness, vibrations and cutting force. Furthermore, chip morphology and wear led by cryo-treated and untreated inserts were detected with the aid of a scanning electron microscope. The results demonstrated that cryo-treated (CTI) insert had lower tool wear, vibration, and cutting force than untreated insert (UI) in all conditions. In aspect of chip morphology, untreated inserts had bigger and larger serrations than the treated inserts. In addition, according to Taguchi S/N ratio, optimal cutting parameters and heat treatment conditions were obtained from CHT1, V3, and f1 for the Fc and from CHT1, V1, and f1 for the Ra, respectively. Also, the most significant control factors on surface roughness and cutting force were feed rate depending on ANOVA results and RSM. Validation test results demonstrated that RSM and Taguchi mixed design calculated the cutting force (R2RSM (CTI and UI) = 99.99% and R2Tag. = 99.95%) and surface roughness (R2RSM (CTI) = 99.76%, R2RSM (UI) = 99.59% and R2Tag. = 99.12%). Therefore, RSM and Taguchi mixed design predicts highly well match experimental data with prediction data.

2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 575 ◽  
Author(s):  
Anagnostis Toulfatzis ◽  
George Pantazopoulos ◽  
Constantine David ◽  
Dimitrios Sagris ◽  
Alkiviadis Paipetis

Heat treatment was performed in order to improve the machinability of three lead-free extruded and drawn brasses, namely CuZn42 (CW510L), CuZn38As (CW511L), and CuZn36 (C27450), based on the concept of microstructural modification. The examined machinability criteria were the following: chip morphology, power consumption, cutting force, and surface roughness. All the above quality characteristics were studied in turning mode in “as received” and “heat treated” conditions for comparison purposes. The selected heat treatment conditions were set for CW510L (775 °C for 60 min), CW511L (850 °C for 120 min), and C27450 (850 °C for 120 min) lead-free brass alloys, according to standard specification and customer requirement criteria. The results are very promising concerning the chip breaking performance, since the heat treatment contributed to the drastic improvement of chip morphology for every studied lead-free brass. Regarding power consumption, heat treatment seems beneficial only for the CW511L brass, where a reduction by 180 W (from 1600 to 1420 W), in relation to the as-received condition, was achieved. Furthermore, heat treatment resulted in a marginal reduction by 10 N and 15 N in cutting forces for CW510L (from 540 to 530 N) and CW511L (from 446 to 431 N), respectively. Finally, surface roughness, expressed in terms of the average roughness value (Ra), seems that it is not affected by heat treatment, as it remains almost at the same order of magnitude. On the contrary, there is a significant improvement of maximum height (Rt) value of CW511L brass by 14.1 μm (from 40.1 to 26.0 μm), after heat treatment process performed at 850 °C for 120 min.


2008 ◽  
Vol 1118 ◽  
Author(s):  
R Tamura ◽  
S Kobayashi ◽  
T Fukuzaki ◽  
M Kamiko

ABSTRCTChange of the magnetic property of Fe-B-Nd-Nb alloys was investigated with replacing Nb by a glass forming element Zr under constant quenching rate as well as heat treatment conditions. As a result, the coercivity significantly increases up to 1207 kA/m when the half of Nd is replaced by Zr, which is presumably due to grain refinement of the Nd2Fe14B phase. The self-organized nanograin magnets are attractive for future applications since their coercivity can be further improved by reducing the grain size via optimizing the Zr concentration, the quenching rate and the subsequent heat treatment condition.


2012 ◽  
Vol 426 ◽  
pp. 151-154 ◽  
Author(s):  
Ying Ying Wei ◽  
Zhi Qiang Liu ◽  
Qing Long An ◽  
Ming Chen

Research has been done on machinability of two different kinds of free-cutting steels by using coated cutting tool at the condition of different cutting parameters. Orthogonal tests are adopted in order to compare the cutting performance of the two materials. The cutting force, surface roughness, chip morphology and tool wear are investigated, which reveal the influence of Pb and other composition on machinability. The experiment shows that 1215 has more or less better performance than 12L14. It is of great significance for the development of environmental friendly products.


1992 ◽  
Vol 264 ◽  
Author(s):  
I. Dutta ◽  
S. Mitra ◽  
J. Cooper

AbstractThe development of secondary phases due to additions of Y2O3 during sintering of aluminum nitride was studied. Depending on the heat treatment conditions and the amount of Y2O3 added, different proportions of AlYO3, Al5Y3O12 and Al2Y4O9 were found at the grain boundaries. Temperatures ≳1850°C also resulted in loss of Y2O3 and/or Y-aluminate, yielding some γAl2O3. The mechanical properties and the thermal conductivity of the sintered product were observed to be dependent on the grain boundary phase constitution and hence the specific heat treatment condition.


2013 ◽  
Vol 554-557 ◽  
pp. 1856-1863 ◽  
Author(s):  
Shohei Kajikawa ◽  
Takashi Iizuka

In this study, we investigated changes in the injectability of bamboo powder and the Vickers hardness of compacted products resulting from differences in heat-treatment conditions such as steaming and boiling. We conducted injection tests and test fabrications of compacted products using bamboo powder treated under various conditions. From the injection tests of heat-treated bamboo powder, we found that injectability was improved by heat treatment. While bamboo powder steamed at 200 °C showed good injectability, boiling at 200 °C yielded better injectability. Vickers hardness tests conducted on compacted products showed that hardness was increased by heat treatment under appropriate conditions. In addition, we found that the heat-treatment condition required to increase the hardness of product was different from that needed to improve injectability.


2017 ◽  
Vol 15 (3) ◽  
pp. 283-296 ◽  
Author(s):  
Aezhisai Vallavi Muthusamy Subramanian ◽  
Mohan Das Gandhi Nachimuthu ◽  
Velmurugan Cinnasamy

2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2011 ◽  
Vol 465 ◽  
pp. 459-462 ◽  
Author(s):  
Lin Wang ◽  
Luen Chow Chan ◽  
Ting Fai Kong

The microstrctural evolution pre and post heat treatment is critical to achieve a successful product for metal forming process. This paper aims to investigate the microstructual effect of the magnesium alloy tubes undergone various heat treatment conditions to achieve material homogenization. The heat treatment conditions under various periods of time (1, 2, 6, 12 and 30 hours) at 400 °C were employed to investigate the microstructural effect on hydroforming magnesium tubes. The greatly reduced impurity embedded in grain boundaries and more uniform grain sizes do indicate the improvement of material strength and ductility. To validate the conclusion, corresponding tensile tests at the different temperatures (20 °C and 200 °C) were carried out. The increased engineering strain in two directions (hoop and longitudinal) implies that the microstructural evolution is unquestionably useful to enhance the ductility of the magnesium tubes. Subsequently, the tubes after optimal heat treatment condition at 400 °C for 6 hours were used to further carry out the thermal hydroforming process for validation. The defect-free hydroformed tubes were produced under the same working condition, which is unable to be achieved for tubes without the heat-treatment process.


Sign in / Sign up

Export Citation Format

Share Document