Numerical Optimization and Energetic Advantages of an Innovative Solar Power System Based on Scheffler Receiver Coupled with Volumetric Expanders

2022 ◽  
pp. 0958305X2110738
Author(s):  
Paolo Iodice ◽  
Amedeo Amoresano ◽  
Giuseppe Langella ◽  
Francesco Saverio Marra

In the current context of increasing public awareness of the externalities of fossil fuel-based energy consumption, improvement in new technologies for energy-saving systems has become a crucial target to reduce both global warming and air pollution. Being motivated by such a critical matter, this study presents an innovative solar thermal plant based on volumetric expanders as work-producing devices coupled with Scheffler solar receivers as a thermal source. Nowadays, Scheffler receivers are well performing owing to high efficiency of the focal receiver which reduce heat losses. Simultaneously, screw expanders are volumetric machines which are able to convert thermal to mechanical power with acceptable efficiency also by expanding vapor-liquid blends at low operating pressures. The numerical model presented in this study evaluates the energetic benefits of the proposed solar power system for various operating situations. Parametric optimization of this solar power plant is then performed in a broad range of operating conditions: the optimum evaporation temperatures, together with the corresponding maximum global efficiencies, were so defined under various solar radiation intensities. The numerical results attained in this research prove that solar electricity generation systems based on screw expanders coupled with the Scheffler receivers are a promising technology.

2022 ◽  
Author(s):  
Tracey Ziev ◽  
Erfan Rasouli ◽  
Ines Noelly-Tano ◽  
Ziheng Wu ◽  
Srujana Yarasi Rao ◽  
...  

Developing low cost, high efficiency heat exchangers (HX) for application in concentrated solar power (CSP) is critical to reducing CSP costs. However, the extreme operating conditions in CSP systems present a challenge for typical high efficiency HX manufacturing processes. We describe a process-based cost model (PBCM) to estimate the cost of fabricating an HX for this application using additive manufacturing (AM). The PBCM is designed to assess the effectiveness of different designs, processes choices, and manufacturing innovations to reduce HX cost. We describe HX design and AM process modifications that reduce HX cost from a baseline of$780/kW-thto$570/kW-th. We further evaluate the impact of alternative current and potential future technologies on HX cost, and identify a pathway to further reduce HX cost to$270/kW-th.


2009 ◽  
Vol 631-632 ◽  
pp. 9-14
Author(s):  
Yoshikazu Shinohara ◽  
Katsuto Kisara ◽  
Hiroaki Suzuki

Laser medium for solar-pumped solid laser of 10MW-1GW power is a key to realize Laser Space Solar Power System (L-SSPS). Since it is an ultrahigh power system operated in space, the laser medium must satisfy the conditions such as high efficiency, high power per weight or volume, excellent durability and maintainability, thermal equilibrium operation, and excellent long-range propagation of oscillated laser. YAG (Y3Al5O12) ceramics doped doubly with Nd and Cr is considered to be a suitable laser medium for L-SSPS at present. There are the following important points for L-SSPS application: 1) Optimization of the doping amount, 2) Process, 3) Temperature control. Feasibility of YAG ceramics is discussed from a view point of material science and proposed a YAG ceramics structure with graded distribution of dopants.


Author(s):  
Gregory A. Johnson ◽  
Michael W. McDowell ◽  
George M. O’Connor ◽  
Chandrashekhar G. Sonwane ◽  
Ganesan Subbaraman

Pratt & Whitney Rocketdyne’s extensive experience in both the rocket engine and energy industries, provides an effective underpinning for work in supercritical CO2 power cycle development. Our current thrusts are supercritical CO2 power conversion for a LMR, a solar power system using molten salt energy storage, and a zero emission coal power system. Key observations from our nuclear power application work is that large, highly-effective heat exchangers will need to be developed, system architecture is driven by start-up operations, etc. along with steady-state full-power operations, and the large volumetric flow rates associated with this cycle coupled with the desire to keep pressure losses low will lead to parallel runs of large diameter pipe. Our solar power work is focused on developing a system architecture that can take advantage of the full thermal storage temperature spectrum while maintaining the high-efficiency and low-cost potential of this cycle. And in the fossil-fuel arena, the efficiency improvements derived from supercritical CO2 are particularly interesting as a way to make up the losses that are caused by CO2 sequestration.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Ullah ◽  
◽  
Asim Mushtaq ◽  
Rizwan Ahmed Qamar ◽  
Zaeem Uddin Ali ◽  
...  

The significance of sustainable power source has expanded because of environmental change and worldwide cautioning concerns because of its renewing quality. Solar energy is the focal point of numerous examinations due to modern industrial applications and small scale local applications in emerging nations. Solar energy is being bridled, either specifically utilizing photovoltaic or secondarily utilizing concentrated solar power. This study aims to design and fabricate a small scale concentrated solar power (CSP) plant using linear parabolic trough. Linear parabolic trough collector is used because of high efficiency and exceedingly prescribed kind of CSP. The scope of this study is to develop a CSP plant and also study the properties of various thermal fluids and expect the best transfer medium. The study done in this research is based on carrying out a detailed energy balance scheme for a linear parabolic trough collector while observing twenty-six vital design parameters, including the geometric measurements and material properties of concentrator and receiver pipe, thermal fluids properties, and operating conditions. Modeling of the system is carried out for different thermal fluids that are deemed viable for use. It was found that the results obtained from the fabricated parabolic trough CSP were used to verify the model and compare with the theoretical results. The conclusions deduced from this study will help design both small and large scale applications of linear parabolic troughs.


Egypt is progressing from a power system with old traditional thermal power stations to a cutting-edge power system with a profoundly productive combined cycle power plants (Siemens 14.4 GW power plants) and an expanding portion of sustainable power sources. By 2022, Egypt intends to produce 20 % of its power from renewables [1]. Benban Solar Park venture is considered as the world's largest solar power plant, with total capacity of about 1.8 GW. The large renewable power stations, especially the solar power plants, have a significant effect on power systems stability due to rapid and large fluctuations in power generation caused by various factors such as the intermittency of solar irradiance, climate change and tripping out of power electronic based converters connected to the system. This paper presents the specialized technical details of the assessment and results to ensure that the Egyptian Transmission System (ETS) is capable to evacuate the renewable power in safe manner under various operating conditions


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sign in / Sign up

Export Citation Format

Share Document