scholarly journals Nonlinear behaviour of reinforced concrete flat slabs after a column loss event

2018 ◽  
Vol 21 (14) ◽  
pp. 2169-2183 ◽  
Author(s):  
Justin M Russell ◽  
John S Owen ◽  
Iman Hajirasouliha

Previous studies have demonstrated that reinforced concrete flat slab structures could be vulnerable to progressive collapse. Although such events are dynamic, simplified static analyses using the sudden column loss scenario are often used to gain an indication into the robustness of the structure. In this study, finite element analysis is used to replicate column loss scenarios on a range of reinforced concrete flat slab floor models. The model was validated against the results of scaled-slab experiments and then used to investigate the influence of different geometric and material variables, within standard design ranges, on the response of the structure. The results demonstrate that slab elements are able to effectively redistribute loading after a column loss event and therefore prevent a progressive collapse. However, the shear forces to the remaining columns were 159% of their fully supported condition and increased to 300% when a dynamic amplification factor of 2.0 was applied. It is shown that this can potentially lead to a punching shear failure in some of the slab elements.

2018 ◽  
Vol 45 (6) ◽  
pp. 504-515 ◽  
Author(s):  
Farzad Rouhani ◽  
Lan Lin ◽  
Khaled Galal

It is known that building structures would undergo nonlinearity during progressive collapse. Given this, modelling the nonlinear behaviour of structural members is critical for assessing their resistance. The objective of this study is to develop the nonlinear modelling parameters of reinforced concrete (RC) beams for the progressive collapse analysis. To achieve this, three types of RC moment-resisting buildings located in high, moderate, and low seismic zones in Canada are designed. Nonlinear pushdown analyses are then conducted on 27 three-dimensional finite element models using ABAQUS to examine the case that one column on the ground level is removed. Based on the analysis results, an idealized moment-rotation curve for modelling the plastic hinge in beams with different ductility is proposed. In comparison with the 2013 GSA modelling parameters, smaller chord rotations are observed from the detailed finite element analysis.


2022 ◽  
pp. 1-24
Author(s):  
Dimitrios K. Zimos ◽  
Panagiotis E. Mergos ◽  
Vassilis K. Papanikolaou ◽  
Andreas J. Kappos

Older existing reinforced concrete (R/C) frame structures often contain shear-dominated vertical structural elements, which can experience loss of axial load-bearing capacity after a shear failure, hence initiating progressive collapse. An experimental investigation previously reported by the authors focused on the effect of increasing compressive axial load on the non-linear post-peak lateral response of shear, and flexure-shear, critical R/C columns. These results and findings are used here to verify key assumptions of a finite element model previously proposed by the authors, which is able to capture the full-range response of shear-dominated R/C columns up to the onset of axial failure. Additionally, numerically predicted responses using the proposed model are compared with the experimental ones of the tested column specimens under increasing axial load. Not only global, but also local response quantities are examined, which are difficult to capture in a phenomenological beam-column model. These comparisons also provide an opportunity for an independent verification of the predictive capabilities of the model, because these specimens were not part of the initial database that was used to develop it.


2019 ◽  
Vol 972 ◽  
pp. 93-98
Author(s):  
Nurulain Hanida Mohamad Fodzi ◽  
M.H. Mohd Hisbany

This paper deals with behavior and capacity of punching shear resistance for ribbed slabs produce from self-compacting fiber reinforced concrete (SCFRC) by application of nonlinear finite element method. The analysis will be achieved by using ABAQUS software. The nonlinear finite element analysis by ABAQUS will be compare with the experimental results. Results and conclusions may be useful for establishing recommendation and need to be acknowledged.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Shilong Peng ◽  
Chuanxin Rong ◽  
Hua Cheng ◽  
Xiaojian Wang ◽  
Mingjing Li ◽  
...  

As coal resources must be mined from ever deeper seams, high-strength, high-performance concrete shaft linings are required to resist the load of the soil surrounding the deep freezing well. In order to determine the optimal concrete mix for the unique conditions experienced by such high-strength high-performance reinforced concrete shaft lining (HSHPRCSL) structures in deep freezing wells, an experimental evaluation of scaled HSHPRCSL models was conducted using hydraulic pressure load tests. It was observed that as the specimens ruptured, plastic bending of the circumferential reinforcement occurred along the failure surface, generated by compression-shear failure. These tests determined that HSHPRCSL capacity was most affected by the ultimate concrete uniaxial compressive strength and the thickness-diameter ratio and least affected by the reinforcement ratio. The experimental results were then used to derive fitting equations, which were compared with the results of theoretical expressions derived using the three-parameter strength criterion for the ultimate bearing capacity, stress, radius, and load in the elastic and plastic zones. The proposed theoretical equations yielded results within 8% of the experimentally fitted results. Finally, the finite element analysis method is used to verify the abovementioned results, and all errors are less than 12%, demonstrating reliability for use as a theoretical design basis for deep HSHPRCSL structures.


Author(s):  
Anatoly V. Perelmuter ◽  
Oleg V. Kabantsev

This paper focuses on the methods of calculating load-bearing systems in the case of a failure of a structural element. This kind of failure makes it necessary to assess further behavior of the structure with a possibility of the progressive collapse development. The stress-strain state analysis of a load-bearing system in the case of a failure of a structure is carried out by two main methods – static and dynamic calculation. It is shown that the static calculation (quasi-static analysis using the dynamic amplification factor) is not a universal method. This paper justifies the application of the direct dynamic calculation in the mode of direct integration of motion for the design analysis of load-bearing systems with high rigidity stories (protection structures for a load-bearing system). It also gives recommendations for selecting parameters of the direct dynamic calculation in the case of a failure analysis of a bearing structure.


2020 ◽  
Vol 5 (6) ◽  
pp. 689-697
Author(s):  
Gemechu Abdissa Diro ◽  
Worku Feromsa Kabeta

Beam column connection is the most critical zone in a reinforced concrete frame. The strength of connection affects the overall behavior and performance of RC framed structures subjected to lateral load and axial loads. The study of critical parameters that affects the overall joint performances and response of the structure is important. Recent developments in computer technology have made possible the use of Finite element method for 3D modeling and analysis of reinforced concrete structures. Nonlinear finite element analysis of reinforced concrete exterior beam column connection subjected to lateral loading was performed in order to investigate joint shear failure mode in terms of joint shear capacity, deformations and cracking pattern using ABAQUS software. A 3D solid shape model using 3D stress hexahedral element type (C3D8R) was implemented to simulate concrete behavior. Wire shape model with truss shape elements (T3D2) was used to simulate reinforcement’s behavior. The concrete and reinforcement bars were coupled using the embedded modeling technique. In order to define nonlinear behavior of concrete material, the concrete damage plasticity (CDP) was applied to the numerical model as a distributed plasticity over the whole geometry. The study was to investigate the most influential parameters affecting joint shear failure due to column axial load, beam longitudinal reinforcement ratio, joint panel geometry and concrete compressive strength. The Finite Element Model (FEM) was verified against experimental test of exterior RC beam column connection subjected to lateral loading. The model showed good comparison with test results in terms of load-displacement relation, cracking pattern and joint shear failure modes. The FEA clarified that the main influential parameter for predicting joint shear failure was concrete compressive strength.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

The paper deals with the loading test results of an experimental reinforced concrete flat slab fragment, which was supported by an elongated rectangular column. The slab specimens were 200 mm thick and were designed without any shear reinforcement. By experimentally obtained punching shear resistance, the accuracy of the standard design models for prediction punching resistance was compared. The results of the experiments were also compared with the results of a numerical non-linear analysis performed in the Atena program.


2020 ◽  
Vol 26 (5) ◽  
pp. 106-127
Author(s):  
Athraa H. Gharbi ◽  
Akram S. Mahmoud

The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrease the uncertainties in data used in the analysis. A parametric study was adopted in this study,  it has many factors such as the ratios of length to thickness, fire temperature, time exposed to fire, concrete compressive strength, area exposed to fires and type of support. It can be concluded from this research the significant factors that affect the punching shear strength. However, the increasing ratio of length to thickness may be lead to increasing the deflection more than 123% at fire condition. Also, the increasing temperature leads to increasing the deflection about 40% at fire condition.


Sign in / Sign up

Export Citation Format

Share Document