scholarly journals Generalized Newtonian flow analysis in the microchannel manufactured by SLA considering nano-scale stair effect

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110704
Author(s):  
Jianhua Sun ◽  
Hai Gu ◽  
Jie Zhang ◽  
Yuanyuan Xu ◽  
Guoqing Wu ◽  
...  

SLA (stereolithography), as a rapid and accurate additive manufacturing method, can be used to mold the microchannel. The stair effect is inevitable when the part is printed layer by layer, which has an important influence on the printing performance. In the current work, the power-law flow in the microchannel with nano-scale stairs manufactured by SLA is simulated and investigated. To improve the stability caused by the non-Newtonian behavior, a modified lattice Boltzmann method (LBM) is proposed and validated. Then, a series of simulations are conducted and analyzed, the results show that both the stair effect and power-law index are important factors. The stairs on the surface force the streamlines to be curved and increase the outlet velocity. In addition, different power-law indexes result in completely different flows. The small power-law index leads to a much larger velocity than other cases, while the large power-law index makes the outlet velocity unstable at the middle position.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 742
Author(s):  
Morteza Esmaeilpour ◽  
Maziar Gholami Korzani

Injection of Newtonian fluids to displace pseudoplastic and dilatant fluids, governed by the power-law viscosity relationship, is common in many industrial processes. In these applications, changing the viscosity of the displaced fluid through velocity alteration can regulate interfacial instabilities, displacement efficiency, the thickness of the static wall layer, and the injected fluid’s tendency to move toward particular parts of the channel. The dynamic behavior of the fluid–fluid interface in the case of immiscibility is highly complicated and complex. In this study, a code was developed that utilizes a multi-component model of the lattice Boltzmann method to decrease the computational cost and accurately model these problems. Accordingly, a 2D inclined channel, filled with a stagnant incompressible Newtonian fluid in the initial section followed by a power-law material, was modeled for numerous scenarios. In conclusion, the results indicate that reducing the power-law index can regulate interfacial instabilities leading to dynamic deformation of static wall layers at the top and the bottom of the channel. However, it does not guarantee a reduction in the thickness of these layers, which is crucial to improve displacement efficiency. The impacts of the compatibility factor and power-law index variations on the filling pattern and finger structure were intensively evaluated.


2000 ◽  
Vol 123 (3) ◽  
pp. 651-654 ◽  
Author(s):  
K. Raghunandana ◽  
B. C. Majumdar, and ◽  
R. Maiti

The purpose of this paper is to study the effect of non-Newtonian lubricant on the stability of oil film journal bearings mounted on flexible support using linear perturbation technique. The model of non-Newtonian lubricant developed by Dien and Elrod is taken into consideration. The dynamic co-coefficients are calculated for different values of power law index and length to diameter ratio. These are then used to find stability margin for different support parameters to study the effect of the non-Newtonian lubricant.


2015 ◽  
Vol 15 (04) ◽  
pp. 1450058 ◽  
Author(s):  
Sukesh Chandra Mohanty ◽  
Rati Ranjan Dash ◽  
Trilochan Rout

In the present work, the vibration and dynamic stability of functionally graded ordinary (FGO) pre-twisted cantilever Timoshenko beam has been investigated. Finite element shape functions are established from differential equations of static equilibrium. Expressions for element stiffness and mass matrices are obtained from energy considerations. Floquet's theory is used to establish the stability boundary. The material properties along the thickness of the beam are assumed to vary according to the power law. The effects of power law index and pre-twist angle on the natural frequencies and dynamic stability of the beam have been investigated. Increase in pre-twist angle enhances the stability of the beam for first mode whereas it makes the beam more prone to parametric instability for the second mode. The increase in power law index is found to have a detrimental effect on the stability of the beam. The chance of parametric instability is enhanced with the increase in static load factor.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fang-Bao Tian

An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.


2003 ◽  
Vol 70 (6) ◽  
pp. 915-923 ◽  
Author(s):  
R. Usha ◽  
B. Uma

Weakly nonlinear stability analysis of thin power-law liquid film flowing down an inclined plane including the phase change effects at the interface has been investigated. A normal mode approach and the method of multiple scales are employed to carry out the linear stability solution and the nonlinear stability solution for the film flow system. The results show that both the supercritical stability and subcritical instability are possible for condensate, evaporating and isothermal power-law liquid film down an inclined plane. The stability characteristics of the power-law liquid film show that isothermal and evaporating films are unstable for any value of power-law index ‘n’ while there exists a critical value of power-law index ‘n’ for the case of condensate film above which condensate film flow system is always stable. Thus, the results of the present analysis show that the mass transfer effects play a significant role in modifying the stability characteristics of the non-Newtonian power-law fluid flow system. The condensate (evaporating) power-law fluid film is more stable (unstable) than the isothermal power-law fluid film flowing down an inclined plane.


Author(s):  
Amir Nejat ◽  
Koohyar Vahidkhah ◽  
Vahid Abdollahi

A second-order lattice Boltzmann algorithm is used for power-law non-Newtonian flow simulation. The shear dependent behavior of the fluid is implemented through calculating the shear locally from the lattice distribution functions. The flow past a series of tandem arrangement of two cylinders is computed in a confined domain. The effect of Reynolds number and the power-law index on drag coefficients of the cylinders are examined in detail. The present study clearly reveals the capability of the lattice Boltzmann method in successful simulation of the complicated non-Newtonian flow fields.


2014 ◽  
Vol 15 (1) ◽  
pp. 265-284 ◽  
Author(s):  
Qiuxiang Li ◽  
Ning Hong ◽  
Baochang Shi ◽  
Zhenhua Chai

AbstractIn this paper, the power-law fluid flows in a two-dimensional square cavity are investigated in detail with multi-relaxation-time lattice Boltzmann method (MRT-LBM). The influence of the Reynolds number (Re) and the power-law index (n) on the vortex strength, vortex position and velocity distribution are extensively studied. In our numerical simulations, Re is varied from 100 to 10000, and n is ranged from 0.25 to 1.75, covering both cases of shear-thinning and shear-thickening. Compared with the Newtonian fluid, numerical results show that the flow structure and number of vortex of power-law fluid are not only dependent on the Reynolds number, but also related to power-law index.


2021 ◽  
Author(s):  
Mashnoon Islam ◽  
Salma Abdul Hai ◽  
Preetom Nag ◽  
Md Mamun Molla

Abstract This numerical study demonstrates heat transfer and irreversibility or entropy generation of non-Newtonian power-law Al2O3-H2O (aluminum oxide-water) nanofluids in a square enclosure using multiple-relaxation-time lattice Boltzmann method accelerated by graphics processing unit computing. In this investigation, the effective thermal conductivity and viscosity are variables, and they depend on the fluid temperature and rate of strain, respectively. The enclosure’s left and right walls are uniformly heated with different temperatures, and the upper and lower walls are thermally adiabatic. There is no valid study and results on non-Newtonian fluid using multiple-relaxation-time lattice Boltzmann method for this configuration and hence the novelty of the present results have been ensured. This paper has formulated and appropriately validated the Newtonian and non-Newtonian natural convection problem with the available numerical results. This study includes a set of comprehensive simulations, showing the effects of these fluids’ natural convection by varying three key parameters: the Rayleigh number, the volume fraction of nanoparticles, and the power-law index on the streamlines, isotherms, local and average Nusselt number as well as the local and total entropy generation. The results show that increasing the volume fraction of the nanoparticles from 0% to 2%, the average rate of heat transfer and the total entropy generation increase 6.5% and 7.4%, respectively, while the Rayleigh number, Ra = 105 and the power-law index n = 0.6.


2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 881-896
Author(s):  
Chunrui Wu ◽  
Tiechen Zhang ◽  
Jiale Fu ◽  
Xiaori Liu ◽  
Boxiong Shen

Abstract In this article, lattice Boltzmann method (LBM) is used to simulate the multi-scale flow characteristics of the engine particulate filter at the pore scale and the representative elementary volume (REV) scale, respectively. Four kinds of random wall-pore structures are considered, which are circular random structure, square random structure, isotropic quartet structure generation set (QSGS), and anisotropic QSGS, with difference analysis done. In terms of the REV scale, the influence of different inlet flow velocities and wall permeabilities on the flow in single channel is analyzed. The result indicates that the internal seepage laws of random structures constructed in this article and single channel are in accordance with Darcy’s law. Circular random structure has better permeability than square random structure. Isotropic QSGS has better fluidity than anisotropic one. The flow in single channel is similar to Poiseuille flow. The flow lines in the channel are complicated and a large number of vortices appear at the ends of channel with high inlet flow rate. With the increase of inlet velocity, the static pressure in channel gradually increases along the axial direction as well as the seepage velocity. The temperature field in the channel becomes more uniform as the flow velocity increases, and the higher temperature distribution appears on the wall of the porous media.


Sign in / Sign up

Export Citation Format

Share Document