scholarly journals Rebalancing Iron Homeostasis and Erythropoiesis through Tfr2 Inhibition for Correction of Anemia in CKD

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 940-940
Author(s):  
Violante Olivari ◽  
Maria Rosa Lidonnici ◽  
Mariam Aghajan ◽  
Mariateresa Pettinato ◽  
Simona Maria Di Modica ◽  
...  

Abstract Background Transferrin Receptor 2 (TFR2) is a protein expressed in the liver and in the erythroid compartment. Hepatic TFR2 activates the transcription of hepcidin, the master regulator of iron homeostasis, and its inactivation causes iron overload. Erythroid TFR2 interacts with Erythropoietin (EPO) receptor and its deletion enhances erythropoiesis increasing EPO sensitivity of erythroid cells. We recently demonstrated that bone marrow (BM) Tfr2 loss improves anemia in a murine model of β-thalassemia. We hypothesized that the same approach might represent a therapeutic option also for anemias due to insufficient EPO production, as anemia of Chronic Kidney Disease (CKD). Indeed, anemia is a common complication of CKD, since EPO production is inhibited by progressive renal failure. In addition, chronic inflammation that parallels renal damage decreases EPO responsiveness of erythroid cells and enhances the production of hepcidin. Increased hepcidin levels limit iron absorption from the diet and release from the stores, reducing iron supply to erythropoiesis. All these factors contribute to anemia development. Replacement therapy with erythropoiesis stimulating agents (ESA), usually combined with iron supplementation, is effective but may lead to cardio-vascular side effects. Thus, novel and more specific strategies are needed. Aims Here, we exploit different murine models of selective Tfr2 inactivation to test whether Tfr2 targeting corrects anemia of CKD. In this context, BM Tfr2 inhibition is expected to stimulate erythropoiesis and the simultaneous downregulation of hepatic Tfr2 to correct iron deficiency. Methods We induced CKD using an adenine-rich diet in mice with: (1) BM-specific Tfr2 deletion (Tfr2 BMKO), generated through BM transplantation; (2) reduced Tfr2 hepatic expression, obtained treating wild-type mice with anti-Tfr2 antisense oligonucleotides (Tfr2-ASO); (3) germline Tfr2 inactivation in the whole organism (Tfr2KO). Results Renal damage was comparable among all the mice analyzed, excluding a differential effect of the diet in the various groups. Tfr2BMKO mice showed enhanced erythropoiesis relative to controls, due to the increased EPO responsiveness of erythroid cells lacking Tfr2, as suggested by the over-activation of the EPO-EPOR signaling pathway despite comparable EPO levels. Tfr2BMKO mice maintained higher red blood cell (RBC) count than controls for the entire protocol. Hemoglobin (Hb) levels, higher in Tfr2BMKO mice for 6 weeks, reached levels of controls at 8 weeks, concomitant with relative hypoferremia. These results indicate that BM Tfr2 deletion transiently prevents anemia until iron availability is adequate to the enhanced erythropoiesis. Then we investigated the potential beneficial effect of increasing iron availability through Tfr2-ASOs treatment, which efficiently decreased hepatic (95-97%) but not erythroid Tfr2. As expected, circulating iron levels were increased in Tfr2-ASO mice, maintaining RBC count and Hb levels in the normal range for the first 2 weeks of treatment. However, Hb and RBCs reverted to control levels at 6 weeks, before the end of the protocol. These results show that increased iron availability alone, due to hepatic Tfr2 downregulation, delays anemia development but is not sufficient to boost erythropoiesis on a long term. In agreement, Tfr2KO mice, with Tfr2 inactivation both in the liver and in the erythroid compartment, maintained higher RBC count and Hb levels compared to controls until the end of the protocol. Conclusions The concomitant targeting of hepatic and erythroid Tfr2, here obtained through Tfr2 germline genetic inactivation, is necessary and sufficient to ameliorate anemia of CKD. On the contrary selective BM Tfr2 deletion that enhances EPO responsiveness of erythroid cells, or hepatic Tfr2 downregulation that increases iron availability, do not correct anemia in a long term. Therefore, a specific approach able to inhibit both hepatic and erythroid Tfr2 could adjust iron availability according to the enhanced erythropoiesis, correcting both drivers of anemia development in CKD. The development of a pharmacologic tool to downregulate Tfr2 might become an alternative to the standard treatment with ESAs plus iron supplementation with limited off-target effects due to the restricted TFR2 expression. Disclosures Aghajan: Ionis Pharmaceuticals, Inc.: Current Employment. Guo: Ionis Pharmaceuticals, Inc.: Current Employment.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-27-SCI-27
Author(s):  
Tracey Rouault

Ferroportin (FPN), the only known vertebrate iron exporter, transports iron from intestinal, splenic, and hepatic cells into the blood to provide iron to other tissues and cells in vivo. Most of the circulating iron is consumed by erythroid cells to synthesize hemoglobin. Recently, we found that erythroid cells not only consume large amounts of iron, but also return significant amounts of iron to the blood. Erythroblast-specific Fpn knockout (Fpn KO) mice developed lower serum iron levels in conjunction with tissue iron overload and increased FPN expression in spleen and liver without changing hepcidin levels. Our results also showed that Fpn KO mice, which suffer from mild hemolytic anemia, were sensitive to phenylhydrazine-induced oxidative stress but were able to tolerate iron deficiency upon exposure to a low-iron diet and phlebotomy, supporting that the anemia of Fpn KO mice resulted from erythrocytic iron overload and resulting oxidative injury rather than a red blood cell (RBC) production defect. Moreover, we found that the mean corpuscular volume (MCV) values of gain-of-function FPN mutation patients were positively associated with serum transferrin saturations, whereas MCVs of loss-of-function FPN mutation patients were not, supporting that erythroblasts donate iron to blood through FPN in response to serum iron levels. Our results indicate that FPN of erythroid cells has an unexpectedly essential role in maintaining systemic iron homeostasis and protecting RBCs from oxidative stress, providing insight into the pathophysiology of FPN diseases. When malaria parasites invade red blood cells (RBCs), they consume copious amounts of hemoglobin, and severely disrupt iron regulation in humans. Anemia often accompanies malaria disease; however, iron supplementation therapy inexplicably exacerbates malarial infections. We recently found that the iron exporter ferroportin (FPN) was highly abundant in RBCs, and iron supplementation suppressed its activity. Conditional deletion of the Fpn gene in erythroid cells resulted in accumulation of excess intracellular iron, cellular damage, hemolysis, and increased fatality in malaria-infected mice. In humans, a prevalent FPN mutation,Q248H (glutamine to histidine at position 248), prevented hepcidin-induced degradation of FPN and protected against severe malaria disease. FPNQ248H appears to have been positively selected in African populations in response to the impact of malaria disease. Thus, FPN protects RBCs against oxidative stress and malaria infection. Zhang DL, Wu J, Shah BN et al. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science. 2018;359 (6383):1520-1523. Zhang DL, Ghosh MC, Ollivierre H, Li Y, Rouault TA. Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood. 2018;132 (19):2078-2087. Zhang DL, Rouault TA. How does hepcidin hinder ferroportin activity. Blood. 2018;131 (8):840-842. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Anam Asad ◽  
James O. Burton ◽  
Daniel S. March

Abstract Acute kidney injury (AKI) is a known risk factor for chronic kidney disease (CKD) and end stage kidney disease (ESKD). The progression from AKI to CKD, despite being well recognised, is not completely understood, although sustained inflammation and fibrosis are implicated. A therapeutic intervention targeting the post AKI stage could reduce the progression to CKD, which has high levels of associated morbidity and mortality. Exercise has known anti-inflammatory effects with animal AKI models demonstrating its use as a therapeutic agent in abrogating renal injury. This suggests the use of an exercise rehabilitation programme in AKI patients following discharge could attenuate renal damage and improve long term patient outcomes. In this review article we outline considerations for future clinical studies of exercise in the AKI population.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 956-956 ◽  
Author(s):  
Violante Olivari ◽  
Maria Rosa Lidonnici ◽  
Mariateresa Pettinato ◽  
Laura Silvestri ◽  
Giuliana Ferrari ◽  
...  

Introduction Anemia is a common and invalidating complication of chronic kidney disease (CKD) mainly due to the impaired erythropoietin (EPO) production that parallels the progression of kidney failure. The current treatment, based on erythropoiesis-stimulating agents (ESA), is far from optimal, because of potential off-target side effects. The same holds true for HIF-stabilizers tested in phase 3 clinical trials. For this reason, the identification of agents that selectively boost erythropoiesis would be of great benefit. Transferrin Receptor 2 (TFR2) is a protein expressed in hepatocytes, where it modulates iron homeostasis activating hepcidin production, and in erythroid cells, where it acts as a partner of erythropoietin (EPO) receptor decreasing EPO signaling. Tfr2 deletion in the liver causes iron overload due to low hepcidin levels, while its deletion in erythroid compartment enhances erythropoiesis through increased EPO sensitivity. Aim The study aims at exploring whether erythroid TFR2 is a potential therapeutic target in anemia of CKD, characterized by reduced EPO production and function. Methods CKD was induced by feeding animals an adenine-rich diet for 8 weeks. The protocol was applied to both wild-type animals, to set-up the system, and to mice with genetic bone marrow Tfr2 deletion (Tfr2BMKO). Complete blood count (CBC) and serum urea were evaluated every 2 weeks during the entire protocol. At the end of the 8 weeks animals were sacrificed and a complete phenotypic analysis of hematological parameters, renal damage and iron homeostasis was performed. Results Wild-type mice fed the adenine diet showed renal damage and inflammation, anemia and iron restriction, recapitulating the main features of human CKD. Renal damage and iron restriction were similar between Tfr2BMKO and control mice, excluding a differential effect of the diet on the two genotypes. Tfr2BMKO mice maintained higher red blood cell count relative to controls for the entire timespan. Hemoglobin levels were higher in Tfr2BMKO mice for 6 weeks, while reached levels of controls at 8 weeks. Based on these findings we conclude that BM Tfr2deletion, increasing EPO sensitivity of erythroid cells, improves erythropoiesis and anemia until iron levels remains adequate. Conclusions We confirm that the adenine-induced murine model of CKD can be a suitable tool for the study of the pathophysiology of renal anemia and for the identification and validation of novel potential therapeutic approaches. More importantly, our results suggest that targeting Tfr2 could become a novel approach to ameliorate anemia of CKD. Given the TFR2 restricted expression, its inactivation would enhance EPO responsiveness selectively in erythroid cells, minimizing the risk of side effects. Targeting erythroid Tfr2 might be considered a novel "erythropoiesis-stimulating approach", likely applicable to other forms of anemia due to insufficient EPO stimulation and response. Disclosures Camaschella: Celgene: Consultancy; Vifor Iron Core: Consultancy; Novartis: Consultancy.


2019 ◽  
Vol 316 (5) ◽  
pp. R584-R593 ◽  
Author(s):  
Sebastien Preau ◽  
Michael Ambler ◽  
Anna Sigurta ◽  
Anna Kleyman ◽  
Alex Dyson ◽  
...  

An impaired capacity of muscle to regenerate after critical illness results in long-term functional disability. We previously described in a long-term rat peritonitis model that gastrocnemius displays near-normal histology whereas soleus demonstrates a necrotizing phenotype. We thus investigated the link between the necrotizing phenotype of critical illness myopathy and proteasome activity in these two limb muscles. We studied male Wistar rats that underwent an intraperitoneal injection of the fungal cell wall constituent zymosan or n-saline as a sham-treated control. Rats ( n = 74) were killed at 2, 7, and 14 days postintervention with gastrocnemius and soleus muscle removed and studied ex vivo. Zymosan-treated animals displayed an initial reduction of body weight but a persistent decrease in mass of both lower hindlimb muscles. Zymosan increased chymotrypsin- and trypsin-like proteasome activities in gastrocnemius at days 2 and 7 but in soleus at day 2 only. Activated caspases-3 and -9, polyubiquitin proteins, and 14-kDa fragments of myofibrillar actin (proteasome substrates) remained persistently increased from day 2 to day 14 in soleus but not in gastrocnemius. These results suggest that a relative proteasome deficiency in soleus is associated with a necrotizing phenotype during long-term critical illness. Rescuing proteasome clearance may offer a potential therapeutic option to prevent long-term functional disability in critically ill patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 1883
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Anca Hermenean

Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.


2019 ◽  
Vol 20 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Laura Pérez-Carbonell ◽  
Howard Faulkner ◽  
Sean Higgins ◽  
Michalis Koutroumanidis ◽  
Guy Leschziner

Vagus nerve stimulation (VNS) is a neuromodulatory therapeutic option for drug-resistant epilepsy. In randomised controlled trials, VNS implantation has resulted in over 50% reduction in seizure frequency in 26%–40% of patients within 1 year. Long-term uncontrolled studies suggest better responses to VNS over time; however, the assessment of other potential predictive factors has led to contradictory results. Although initially designed for managing focal seizures, its use has been extended to other forms of drug-resistant epilepsy. In this review, we discuss the evidence supporting the use of VNS, its impact on seizure frequency and quality of life, and common adverse effects of this therapy. We also include practical guidance for the approach to and the management of patients with VNS in situ.


2016 ◽  
Vol 11 (2) ◽  
pp. 98 ◽  
Author(s):  
Michela Faggioni ◽  
◽  
Roxana Mehran ◽  

Contrast-induced acute kidney injury (CI-AKI) is characterised by a rapid deterioration of renal function within a few days of parenteral administration of contrast media (CM) in the absence of alternative causes. CI-AKI is the most common form of iatrogenic kidney dysfunction with an estimated prevalence of 12 % in patients undergoing percutaneous coronary intervention. Although usually selfresolving, in patients with pre-existing chronic kidney disease (CKD) or concomitant risk factors for renal damage, CI-AKI is associated with increased short- and long-term morbidity and mortality. Therefore, risk stratification based on clinical and peri-procedural characteristics is crucial in selecting patients at risk of CI-AKI who would benefit the most from implementation of preventive measures.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Michiel Costers ◽  
Rita Van Damme-Lombaerts ◽  
Elena Levtchenko ◽  
Guy Bogaert

The main goal of the management of vesicoureteral reflux (VUR) is prevention of recurrent urinary tract infections (UTIs), and thereby prevention of renal parenchymal damage possibly ensuing from these infections. Long-term antibiotic prophylaxis is common practice in the management of children with VUR, as recommended in 1997 in the guidelines of the American Urological Association. We performed a systematic review to ascertain whether antibiotics can be safely discontinued in children with VUR and whether prophylaxis is effective in the prevention of recurrent UTIs and renal damage in these patients. Several uncontrolled studies indicate that antibiotic prophylaxis can be discontinued in a subset of patients, that is, school-aged children with low-grade VUR, normal voiding patterns, kidneys without hydronephrosis or scars, and normal anatomy of the urogenital system. Furthermore, a few recent randomized controlled trials suggest that antibiotic prophylaxis offers no advantage over intermittent antibiotic therapy of UTIs in terms of prevention of recurrent UTIs or new renal damage.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Paola Villafuerte-Gutiérrez ◽  
Montserrat López Rubio ◽  
Pilar Herrera ◽  
Eva Arranz

Hematopoietic myeloproliferative neoplasms with FGFR1 rearrangement result in the 8p11 myeloproliferative syndrome that in the current Word Health Organization classification is designated as “myeloid and lymphoid neoplasm with FGFR1 abnormalities.” We report the case of a 66-year-old man who had clinical features that resembled chronic myeloid leukaemia (CML), but bone marrow cytogenetic and fluorescent in situ hybridization (FISH) studies showed t(8;22)(p11;q11) and BCR-FGFR1 fusion gene. He was initially managed with hydroxyurea, and given the aggressive nature of this disease, four months later, the patient underwent an allogeneic hematopoietic stem-cell transplantation (HSCT) from an HLA-haploidentical relative. Currently, HSCT may be the only therapeutic option for long-term survival at least until more efficacious tyrosine kinase inhibitors (TKIs) become available.


Sign in / Sign up

Export Citation Format

Share Document