Targeting of Heat Shock Protein 32 (Hsp32) in Neoplastic Cells by Styrene Maleic Acid Zinc Protoporphyrin (SMA-ZnPP) Is Associated with Reduced Growth and Induction of Apoptosis.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4323-4323
Author(s):  
Karoline V. Gleixner ◽  
Mayerhofer Matthias ◽  
Anja Vales ◽  
Alexander Gruze ◽  
Michael Kneidinger ◽  
...  

Abstract Heat shock protein 32 (Hsp32), also known as heme oxygenase-1 (HO-1), is a stress-related survival factor that has recently been implicated in enhanced survival of neoplastic cells. We here show that Hsp32/HO-1 is expressed abundantly in primary neoplastic cells in various solid tumors and hematopoietic neoplasms such as acute myeloid leukemia (AML) or chronic myeloid leukemia (CML), and in respective cell lines including the AML cell lines HL60, KG1, KG1a, and U937, CML cell lines K562 and KU812, eosinophilic leukemia cell line EOL-1, mast cell leukemia cell line HMC-1, myeloma cell lines RPMI8226 and U266, breast cancer cell line MDA MB 231, lung cancer cell line A549, pancreatic carcinoma cell line BxPC-3, colon carcinoma cell lines COLO201, COLO205, COLO320DM, and DLD-1, and the ovarian carcinoma cell line OVCAR-3. Expression of Hsp32 mRNA was demonstrable by RT-PCR and Northern blotting, and expression of the Hsp32 protein by Western blotting and immunocytochemistry. The CML-specific oncoprotein BCR/ABL and the transforming oncoprotein KIT D816V that is expressed in neoplastic mast cells, were found to promote expression of Hsp32 in Ba/F3 cells. In order to examine the functional role of Hsp32 in neoplastic cells, a specific siRNA was employed. Expression of Hsp32 siRNA resulted in reduced viability and induction of apoptosis in all cell lines tested. To further explore the value of Hsp32 as a target in neoplastic cells, a novel specific Hsp32-targeting compound, styrene maleic acid copolymer zinc protoporphyrin micelles (SMA-ZnPP) was applied. Exposure to SMA-ZnPP resulted in a significant decrease in proliferation determined by 3H-thymidine uptake, in all cell lines as well as in all primary neoplastic cells tested (AML, n=5; CML, n=5; mastocytosis, n=3; breast cancer, n=2; lung cancer, n=1). As assessed by AnnexinV-staining, Tunel assay and electron microscopy, the growth-inhibitory effects of SMA-ZnPP were found to be associated with induction of apoptosis. In each cell type, the effect of SMA-ZnPP on growth was dose-dependent and found to occur at pharmacologic concentrations (IC50 1–30 μM). Moreover, SMA-ZnPP was found to synergize with various anti-neoplastic drugs (tumor cell lines: cisplatin, leukemias: cytarabine, myeloma: bortezomib) in producing growth inhibition. In summary, these data show that Hsp32/HO-1 is an important survival factor and novel interesting target in various hematopoietic and non-hematopoietic neoplasms. Based on these data, it seems desirable to explore the value of the Hsp32-targeting drug SMA-ZnPP in clinical trials in patients with leukemias and solid tumors.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4375-4375
Author(s):  
Mayuko Goto ◽  
Ichiro Hanamura ◽  
Motohiro Wakabayashi ◽  
Hisao Nagoshi ◽  
Tomohiko Taki ◽  
...  

Abstract Abstract 4375 Leukemia cell lines are ubiquitous powerful research tools that are available to many investigators. In balanced chromosomal aberration in leukemia, a chimeric fusion gene formed by genes existing on breakpoints is frequently related to leukemogenesis. Cytogenetic abnormalities of chromosome band 12p13 are detected non-randomly in various hematological malignancies and usually involved TEL, which encodes a protein of the ETS transcription factor family. Chromosome band 22q11-12 is one of partners of translocation 12p13 and t(12;22)(p13;q11-12) results in fusion of TEL and MN1 or in just the partial inactivation of TEL. It is important to analyze precisely the breakpoint in a non-random translocation such as t(12;22)(p13;q11-12) and in addition it contributes to the better understanding of the molecular pathogenesis of leukemogenesis. In this study, we established a novel human myeloid leukemia cell line, AMU-AML1, having t(12;22) from a patient with acute myeloid leukemia with multilineage dysplasia and analyzed its characters. Mononuclear cells were isolated by Ficoll-Hypaque sedimentation from patient's bone marrow before initiation of chemotherapy and cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS). After 3 months, cell proliferation became continuous. The cell line, named AMU-AML1, was established. In AMU-AML1, the following pathogens were negative for EBV, CMV, HBV, HCV, HIV-1, HTLV-1 and mycoplasma. A doubling time of AMU-AML1 cells was about 96 hours. Proliferation of the cells was stimulated by rhG-CSF (10 ng/ml), rhGM-CSF (10 ng/ml), M-CSF (50 ng/ml), rhIL-3 (10 ng/ml) and rhSCF (100 ng/ml) but not by IL-5 (10 ng/ml), rhIL-6 (10 ng/ml), and rhEPO (5 U/ml). AMU-AML1 was positive for CD13, CD33, CD117 and HLA-DR, negative for CD3, CD4, CD8 and CD56 by flow cytometry analysis. G-banding combined with SKY analysis of AMU-AML1 cells showed single structural abnormality; 46, XY, t(12;22)(p13;q11.2). Double-color FISH using PAC/BAC clones listed in NCBI website and array CGH analyses indicated that the breakpoint in 12p13 was within TEL or telomeric to TEL and it of 22q11 was centromeric to MN1. A chimeric MN1-TEL transcript and fusion protein of MN1-TEL could not be detected by RT-PCR and western blot analysis. The wild type of MN1 protein was strongly expressed in AMU-AML1 compared with other leukemic cell lines with t(12;22), MUTZ-3 and UCSD/AML1. Our data suggest that AMU-AML1 had a t(12;22)(p13;q11.2) without fusion of MN1-TEL and the expression level of MN1 protein was relatively high, which might have some effects on leukemogenesis. In conclusion, AMU-AML1 is a useful cell line to analyze the biological consequences of the leukemic cells with t(12;22)(p13;q11.2) but no fusion of MN1-TEL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2376-2376
Author(s):  
Hilmar Quentmeier ◽  
Maria P. Martelli ◽  
Wilhelm G. Dirks ◽  
Niccolo Bolli ◽  
Arcangelo Liso ◽  
...  

Abstract Wild-type nucleophosmin (NPM) is a multifunctional protein shuttling between the nucleus and the cytoplasm. Chromosomal rearrangements leading to NPM fusion proteins occur in leukemias and lymphomas (e.g. with partners RARA, ALK). Recently, Falini et al. reported that 60% of acute myeloid leukemia (AML) patients with normal karyotype carry mutations at exon-12 of the NPM gene. This results in frame shifts that lead to alterations of the C-terminus of NPM resulting in the aberrant cytoplasmic localization of the mutated protein (NPMc+) (1). The effects of a mutationally altered protein on cellular functions like proliferation, differentiation or apoptosis, have often been revealed using immortalized cell lines that carry the mutation in question. Therefore, we screened a panel of 79 myeloid leukemia cell lines for presence of mutations - 4 bp insertions - at the exon-12 of the NPM gene. We performed polymerase chain reaction (PCR) analysis with fluorescent dye-labeled primers. For fragment size determination, the PCR products were mixed with dye-labeled size standards and separated by capillary electrophoresis. OCI-AML3 was the only cell line that expressed a signal in addition to and 4 bp larger than the wild-type NPM signal. Sequencing of the cloned NPM-mutated PCR product showed TCTG duplication at positions 956–959 of exon-12. This mutation was heterozygous and corresponded to the type that occurs in 77% of primary NPMc+ AMLs. OCI-AML3 cells have a hyperdiploid karyotype with 48(45–50)<2n>X/XY, +1, +5, +8, der(1)t(1;18)(p11;q11), i(5p),del(13)(q13q21), dup(17)(q21q25); sideline with r(Y)x1-2 and show the following immunoprofile: CD3−, CD4+, CD7−, CD8−, CD10−, CD13+, CD14−, CD15+, CD19−, CD30−, CD33−, CD34−, CD41+, CD42b−, CD68+, CD235a+, HLA-DR-. Especially the presence of myeloid markers and absence of CD34 is typical for NPMc+ cells (1). Furthermore, immunostaining with anti-NPM antibodies confirmed that the OCI-AML3 cells, like primary NPMc+ AML and in contrast to NPM wild-type cells, show cytoplasmic expression of NPM. Functional studies showed that the altered nucleo-cytoplasmic transport of NPM was nuclear export signalling-dependent and could be blocked by using the specific CRM1/exportin-1 inhibitor leptomycin B. In conclusion, cell line OCI-AML3 promises to be an important tool for studying the biological properties and response to new drugs of NPMc+ AML.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4384-4384
Author(s):  
Karina Lani Silva ◽  
Martina de Freitas Prazeres ◽  
Raquel Ciuvalschi Maia

Abstract Caspases are proteins that play a central role in apoptosis. Therefore, triggering apoptosis through chemotherapeutical caspases inductor drugs is the major path in cancer treatment. However, hindering apoptosis by inhibitor of apoptosis proteins (IAPs) overexpression, have been described in many cancer types including leukemia and, is frequently related to drug resistance. Survivin, a member of IAPs family, is expressed in most human cancers but undetectable in the majority of normal adult tissues. In acute myeloid leukemia (AML), Survivin expression has been correlated with poor prognosis and chemotherapy resistance. These characteristics make Survivin eligible for a promising target for AML treatment. To explore the relationship between Survivin and drug resistance we investigated the alteration of Survivin expression in two AML cell lines HL60 (AML-M2) and U937 (AML-M5) and one chronic myeloid leukemia cell line in blast crisis for M6 (K562) treated with two chemotherapeutic drugs used in leukemia treatment: arsenic trioxide (As2O3) and doxorubicin (Dox). MTT assay was performed to determine the dose of drugs capable to induce cell death in 50% of treated cells (DL50). To verify the percentage of apoptosis induced by As2O3 and Dox at DL50 concentrations determined by MTT, the annexin V/propidium iodide-staining assay was performed and analyzed by flow cytometer. Western blot was used to analyze Survivin expression before and after drugs treatment at DL50 concentrations. Among the cell lines studied, HL60 was the most sensitive for both drugs tested. The DL50 concentrations obtained for As2O3 were 2, 4 and 5 μM at 24 hours for HL60, U937 and K562, respectively. Dox DL50 concentrations were 10 μM at 24 hours for HL60, 5 μM at 48 hours for K562 and 1 μM at 72 hours for U937. The annexin-V/PI staining showed that these drugs were capable to induce apoptosis in all cell lines tested. The percentages of apoptosis induction for As2O3 were 50% for HL60, 21,84% for U937 and 32,7% for K562 in comparison with control cells, while for Dox, the index of apoptosis were 86,8%, 35,7% and 2,2% for HL60, U937 and K562, respectively. Interestingly, at DL50 concentrations As2O3 and Dox inhibited Survivin expression in 72,7% and 69,2%, respectively. No significant alteration in Survivin expression was observed in U937 and K562 cell lines. Thus, HL60 cell line was the most sensible cell line studied and it was correlated with downregulation of Survivin expression. It suggests that Survivin could be considered a therapeutic target for AML-M2 and that As2O3 and Dox are capable to decrease drug resistance. However, the mechanism of action of As2O3 and Dox in Survivin expression seems to be cell type specific.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1291 ◽  
Author(s):  
Cheng-Neng Mi ◽  
Hao Wang ◽  
Hui-Qin Chen ◽  
Cai-Hong Cai ◽  
Shao-Peng Li ◽  
...  

A phytochemical investigation of the roots of Swietenia macrophylla led to the isolation of seven polyacetylenes, including five new compounds (15) and two known ones (67). Their structures were elucidated by extensive spectroscopic analysis and detailed comparison with reported data. All the isolates were tested for their cytotoxicity against the human hepatocellular carcinoma cell line BEL-7402, human myeloid leukemia cell line K562, and human gastric carcinoma cell line SGC-7901. Compounds 1 and 6 showed moderate cytotoxicity against the above three human cancer cell lines with IC50 values ranging from 14.3 to 45.4 μM. Compound 4 displayed cytotoxicity against the K562 and SGC-7901 cancer cell lines with IC50 values of 26.2 ± 0.4 and 21.9 ± 0.3 μM, respectively.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 344-350 ◽  
Author(s):  
HP Koeffler ◽  
DW Golde

Abstract Several human acute myeloid leukemia cell lines were recently established. These lines provide model systems to study the control of differentiation in human myelogenous leukemia and, in a broader framework, the controls of normal myeloid development. The K562 line is composed of undifferentiated blast cells that are rich in glycophorin and may be induced to produce fetal and embryonic hemoglobin in the presence of hemin. The KG-1 cell line is composed predominantly of myeloblasts and promyelocytes. A unique characteristic of the KG-1 cells is their almost complete dependence on colony-stimulating factor for proliferation in soft-gel culture. The HL-60 is a promyelocytic leukemia cell line. In the presence of DMSO, the cells mature into granulocytes. Both the KG-1 and HL-60 cells differentiate into nondividing mononuclear phagocytes when exposed to phorbol esters. Investigations with these cell lines, and selected variants should provide important insights into the cell biology and perhaps therapy of human leukemia.


Author(s):  
Rahul Kumar Gupta ◽  
Renu Bharat Rathi

Background: In the last few decades, plants have been playing a vital role in treating cancer and infectious diseases. Natural products have been rediscovered as effective methods of drug production amid advances in combinatorial chemistry. Roots of Martynia annua are being used as a folklore remedy for the treatment of cancer and rheumatism successfully. Aims of the Study: In the present study, ethanolic, aqueous and hydro-ethanolic root extracts of Martynia annua were screened for in vitro cytotoxicity activity using different cell lines. Settings and Design: In the experiment, lung cancer cell lines (A549), leukemia cancer cell lines (K562), oral cancer cell lines (SCC-40), breast cancer cell lines (MCF-7) & cervix cancer cell lines (SiHa) were studied on the extracts. Materials and Methods: The method used was Sulforhodamine B (SRB) assay technique in which growth inhibition of 50% (GI50) was analyzed by comparing it with standard drug Adriamycin (ADR) (doxorubicin). Results: Aqueous & ethanolic extract of Martynia annua root had shown high anticancer activity with GI50 value 11.3µg/ml and 20.4µg/ml respectively on human leukemia cell line K-562 but for human breast cancer cell line MCF-7, human lung cancer cell line A-549, human squamous cell carcinoma SCC-40 and human cervical cancer cell line SiHa the extracts showed activity in more than 80µg/ml. Conclusion: The anticancer activity of aqueous extract of Martynia annua root was found superior than the ethanolic extract in Human Leukemia Cell Line K-562. The study indicates that the Martynia annua root extracts are most effective against the fast proliferative cells (Leukemic cells) and possibly a cell cycle arrest (needed to be proved as future perspective) is the mode of action of the extract. To study its effect on targeted cancers, specific in vivo scientific studies and clinical trials should be carried out by further researchers.


Blood ◽  
1980 ◽  
Vol 56 (3) ◽  
pp. 344-350 ◽  
Author(s):  
HP Koeffler ◽  
DW Golde

Several human acute myeloid leukemia cell lines were recently established. These lines provide model systems to study the control of differentiation in human myelogenous leukemia and, in a broader framework, the controls of normal myeloid development. The K562 line is composed of undifferentiated blast cells that are rich in glycophorin and may be induced to produce fetal and embryonic hemoglobin in the presence of hemin. The KG-1 cell line is composed predominantly of myeloblasts and promyelocytes. A unique characteristic of the KG-1 cells is their almost complete dependence on colony-stimulating factor for proliferation in soft-gel culture. The HL-60 is a promyelocytic leukemia cell line. In the presence of DMSO, the cells mature into granulocytes. Both the KG-1 and HL-60 cells differentiate into nondividing mononuclear phagocytes when exposed to phorbol esters. Investigations with these cell lines, and selected variants should provide important insights into the cell biology and perhaps therapy of human leukemia.


2007 ◽  
Vol 53 (6) ◽  
pp. 1153-1155 ◽  
Author(s):  
Dihua Shangguan ◽  
Zehui Charles Cao ◽  
Ying Li ◽  
Weihong Tan

Abstract Background: Molecular-level differentiation of neoplastic cells is essential for accurate and early diagnosis, but effective molecular probes for molecular analysis and profiling of neoplastic cells are not yet available. We recently developed a cell-based SELEX (systematic evolution of ligands by exponential enrichment) strategy to generate aptamers (designer DNA/RNA probes) as molecular probes to recognize neoplastic cells. Methods: We tested 6 cell-SELEX–generated aptamers with equilibrium dissociation constants in the nanomolar to subnanomolar range: sgd5, selected from Toledo cells, a human diffuse large-cell lymphoma cell line (B-cell), and sgc8, sgc3, sgc4, sgd2, and sgd3 from CCRF-CEM cells, a human precursor T cell acute lymphoblastic leukemia (T-ALL) cell line. Aptamers were labeled with fluorescein isothiocyanate fluorophores and then used to recognize, by flow cytometric analysis, neoplastic cells in cultured hematopoietic cell lines and clinical samples. Results: Aptamer sgd5 recognized only its target cells. Aptamers sgc3, sgd2, sgd3, sgc4, and sgc8, selected from a T-cell leukemia cell line, identified all of the cultured T-cell leukemia cell lines with relatively high fluorescence intensity. Aptamers sgc8, sgc3, and sgd3 showed good selectivity toward T-ALL cells and almost no binding to normal hematopoietic cells or lymphoma and myeloma cells. Selected aptamers also detected targets on the cell membranes of neoplastic cells in patient samples. Conclusions: Aptamers selected against cultured neoplastic cells can effectively be used as molecular probes for recognition of neoplastic cells in patient samples. Cell-based aptamer selection can be used to generate aptamer probes to obtain molecular signatures of neoplastic cells in patient samples.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Li-Rong Yang ◽  
Zhu-Ying Lin ◽  
Qing-Gang Hao ◽  
Tian-Tian Li ◽  
Yun Zhu ◽  
...  

Abstract Background Chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) are two common malignant disorders in leukemia. Although potent drugs are emerging, CML and AML may still relapse after the drug treatment is stopped. N6-methyladenosine (m6A) and lncRNAs play certain roles in the occurrence and development of tumors, but m6A-modified LncRNAs in ML remain to be further investigated. Methods In this study, we extracted and analyzed the TCGA gene expression profile of 151 ML patients and the clinical data. On this basis, we then evaluated the immune infiltration capacity of ML and LASSO-penalized Cox analysis was applied to construct the prognostic model based on m6A related lncRNAs to verify the prognostic risk in clinical features of ML. Quantitative reverse transcription PCR was used to detect the expression level of LncRNA in in ML cell lines K562, MOLM13 and acute monocytic leukemia cell line THP-1. Results We found 70 m6A-related lncRNAs that were related to prognosis, and speculated that the content of stromal cells and immune cells would correlate with the survival of patients with ML. Next, Prognostic risk model of m6A-related lncRNAs was validated to have excellent consistency in clinical features of ML. Finally, we verified the expression levels of CRNDE, CHROMR and NARF-IT1 in ML cell lines K562, MOLM13 and acute monocytic leukemia cell line THP-1, which were significant. Conclusions The research provides clues for the prognosis prediction of ML patients by using the m6A-related lncRNAs model we have created, and clarifies the accuracy and authenticity of it.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


Sign in / Sign up

Export Citation Format

Share Document