scholarly journals Application of structural equation models to construct genetic networks using differentially expressed genes and single-nucleotide polymorphisms

2007 ◽  
Vol 1 (Suppl 1) ◽  
pp. S76 ◽  
Author(s):  
Seungmook Lee ◽  
Mina Jhun ◽  
Eun-Kyung Lee ◽  
Taesung Park
2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Zheng ◽  
Chenkang Yang ◽  
Xingwei Zheng ◽  
Suxian Yan ◽  
Fei Qu ◽  
...  

Plant epidermal wax helps protect plants from adverse environmental conditions, maintains the function of tissues and organs, and ensures normal plant development. However, the constituents of epidermal wax and the regulatory mechanism of their biosynthesis in wheat have not been fully understood. Wheat varieties with different wax content, Jinmai47 and Jinmai84, were selected to comparatively analyze their waxy components and genetic characteristics, using a combination of lipidomic, transcriptomic, and BSA-Wheat 660K chip analysis. Through lipidomic analysis, 1287 lipid molecules were identified representing 31 lipid subclasses. Among these, Diacylglycerols (DG), (O-acyl)-ω-hydroxy fatty acids (OAHFA), wax ester (WE), Triacylglycerols (TG), and Monoradylglycerols (MG) accounted for 96.4% of the total lipids in Jinmai84 and 94.5% in Jinmai47. DG, OAHFA, and WE were higher in Jinmai84 than in Jinmai47 with the content of OAHFA 2.88-fold greater and DG 1.66-fold greater. Transcriptome sequence and bioinformatics analysis revealed 63 differentially expressed genes related to wax biosynthesis. Differentially expressed genes (DEGs) were found to be involved with the OAHFA, DG, and MG of synthesis pathways, which enriched the wax metabolism pathway. Non-glaucous and glaucous bulks from a mapping population were used to identify single nucleotide polymorphisms (SNP) via 660K chip analysis. Two loci centered on chromosomes 2D and 4B were detected and the locus on 4B is likely novel. These data improve understanding of complex lipid metabolism for cuticular wax biosynthesis in wheat and lay the foundation for future detailed investigation of mechanisms regulating wax metabolism.


2020 ◽  
Author(s):  
Bruce A. Williamson-Benavides ◽  
Richard Sharpe ◽  
Grant Nelson ◽  
Eliane T. Bodah ◽  
Lyndon D. Porter ◽  
...  

AbstractPisum sativum (pea) yields have declined significantly over the last decades, predominantly due to susceptibility to root rot diseases. One of the main causal agents of root rot is the fungus Fusarium solani f. sp. pisi (Fsp), leading to yield losses ranging from 15 to 60%. Determining and subsequently incorporating the genetic basis for resistance in new cultivars offers one of the best solutions to control this pathogen; however, no green-seeded pea cultivars with complete resistance to Fsp have been identified. To date, only partial levels of resistance to Fsp has been identified among pea genotypes. SNPs mined from Fsp-responsive differentially expressed genes (DEGs) identified in a preceding study were utilized to identify QTLs associated with Fsp resistance using composite interval mapping in two recombinant inbred line (RIL) populations segregating for partial root rot resistance. A total of 769 DEGs with single nucleotide polymorphisms (SNPs) were identified, and the putative SNPs were evaluated for being polymorphic across four partially resistant and four susceptible P. sativum genotypes. The SNPs with validated polymorphisms were used to screen two RIL populations using two phenotypic criteria: root disease severity and plant height. One QTL, WB.Fsp-Ps 5.1 that mapped to chromosome V explained 14.76 % of the variance with a confidence interval of 10.36 cM. The other four QTLs located on chromosomes II, III, and V, explained 5.26–8.05 % of the variance. The use of SNPs derived from Fsp-responsive DEGs for QTL mapping proved to be an efficient way to identify molecular markers associated with Fsp resistance in pea. These QTLs are potential candidates for marker-assisted selection and gene pyramiding to obtain high levels of partial resistance in pea cultivars to combat root rot caused by Fsp.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruce A. Williamson-Benavides ◽  
Richard M. Sharpe ◽  
Grant Nelson ◽  
Eliane T. Bodah ◽  
Lyndon D. Porter ◽  
...  

Pisum sativum (pea) yields in the United States have declined significantly over the last decades, predominantly due to susceptibility to root rot diseases. One of the main causal agents of root rot is the fungus Fusarium solani f. sp. pisi (Fsp), leading to yield losses ranging from 15 to 60%. Determining and subsequently incorporating the genetic basis for resistance in new cultivars offers one of the best solutions to control this pathogen; however, no green-seeded pea cultivars with complete resistance to Fsp have been identified. To date, only partial levels of resistance to Fsp has been identified among pea genotypes. SNPs mined from Fsp-responsive differentially expressed genes (DEGs) identified in a preceding study were utilized to identify QTLs associated with Fsp resistance using composite interval mapping in two recombinant inbred line (RIL) populations segregating for partial root rot resistance. A total of 769 DEGs with single nucleotide polymorphisms (SNPs) were identified, and the putative SNPs were evaluated for being polymorphic across four partially resistant and four susceptible P. sativum genotypes. The SNPs with validated polymorphisms were used to screen two RIL populations using two phenotypic criteria: root disease severity and plant height. One QTL, WB.Fsp-Ps 5.1 that mapped to chromosome 5 explained 14.8% of the variance with a confidence interval of 10.4 cM. The other four QTLs located on chromosomes 2, 3, and 5, explained 5.3–8.1% of the variance. The use of SNPs derived from Fsp-responsive DEGs for QTL mapping proved to be an efficient way to identify molecular markers associated with Fsp resistance in pea. These QTLs are potential candidates for marker-assisted selection and gene pyramiding to obtain high levels of partial resistance in pea cultivars to combat root rot caused by Fsp.


2010 ◽  
Vol 34 (8) ◽  
pp. S75-S75
Author(s):  
Weifeng Zhu ◽  
Zhuoqi Liu ◽  
Daya Luo ◽  
Xinyao Wu ◽  
Fusheng Wan

2007 ◽  
Vol 28 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Rosalind Arden ◽  
Nicole Harlaar ◽  
Robert Plomin

Abstract. An association between intelligence at age 7 and a set of five single-nucleotide polymorphisms (SNPs) has been identified and replicated. We used this composite SNP set to investigate whether the associations differ between boys and girls for general cognitive ability at ages 2, 3, 4, 7, 9, and 10 years. In a longitudinal community sample of British twins aged 2-10 (n > 4,000 individuals), we found that the SNP set is more strongly associated with intelligence in males than in females at ages 7, 9, and 10 and the difference is significant at 10. If this finding replicates in other studies, these results will constitute the first evidence of the same autosomal genes acting differently on intelligence in the two sexes.


Sign in / Sign up

Export Citation Format

Share Document