scholarly journals A cis-regulatory element promoting increased transcription at low temperature in cultured ectothermic Drosophila cells

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Bai ◽  
Emmanuel Caussinus ◽  
Stefano Leo ◽  
Fritz Bosshardt ◽  
Faina Myachina ◽  
...  

Abstract Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range.

2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Martínez-Torró ◽  
Sergi Torres-Puig ◽  
Marina Marcos-Silva ◽  
Marta Huguet-Ramón ◽  
Carmen Muñoz-Navarro ◽  
...  

It is well-established that FtsZ drives peptidoglycan synthesis at the division site in walled bacteria. However, the function and conservation of FtsZ in wall-less prokaryotes such as mycoplasmas are less clear. In the genome-reduced bacterium Mycoplasma genitalium, the cell division gene cluster is limited to four genes: mraZ, mraW, MG_223, and ftsZ. In a previous study, we demonstrated that ftsZ was dispensable for growth of M. genitalium under laboratory culture conditions. Herein, we show that the entire cell division gene cluster of M. genitalium is non-essential for growth in vitro. Our analyses indicate that loss of the mraZ gene alone is more detrimental for growth of M. genitalium than deletion of ftsZ or the entire cell division gene cluster. Transcriptional analysis revealed a marked upregulation of ftsZ in the mraZ mutant. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics confirmed the overexpression of FtsZ in MraZ-deprived cells. Of note, we found that ftsZ expression was upregulated in non-adherent cells of M. genitalium, which arise spontaneously at relatively high rates. Single cell analysis using fluorescent markers showed that FtsZ localization varied throughout the cell cycle of M. genitalium in a coordinated manner with the chromosome and the terminal organelle (TMO). In addition, our results indicate a possible role for the RNA methyltransferase MraW in the regulation of FtsZ expression at the post-transcriptional level. Altogether, this study provides an extensive characterization of the cell division gene cluster of M. genitalium and demonstrates the existence of regulatory elements controlling FtsZ expression at the temporal and spatial level in mycoplasmas.


Gene ◽  
2017 ◽  
Vol 626 ◽  
pp. 386-394 ◽  
Author(s):  
Yulin Fang ◽  
Dianguang Xiong ◽  
Longyan Tian ◽  
Chen Tang ◽  
Yonglin Wang ◽  
...  

2010 ◽  
Vol 42 (3) ◽  
pp. 384-396 ◽  
Author(s):  
Kenneth S. Kompass ◽  
Gaetan Deslee ◽  
Carla Moore ◽  
Donald McCurnin ◽  
Richard A. Pierce

Cross-species analysis of microarray data has shown improved discriminating power between healthy and diseased states. Computational approaches have proven effective in deciphering the complexity of human disease by identifying upstream regulatory elements and the transcription factors that interact with them. Here we used both methods to identify highly conserved transcriptional responses during mechanical ventilation, an important therapeutic treatment that has injurious side effects. We generated control and ventilated whole lung samples from the premature baboon model of bronchopulmonary dysplasia (BPD), processed them for microarray, and combined them with existing whole lung oligonucleotide microarray data from 85 additional control samples from mouse, rat, and human and 19 additional ventilated samples from mouse and rat. Of the 2,531 orthologs shared by all 114 samples, 60 were modulated by mechanical ventilation [false discovery rate (FDR)-adjusted q value ( qFDR) = 0.005, ANOVA]. These included transcripts encoding the transcription factors ATF3 and FOS. Because of compelling known roles for these transcription factors, we used computational methods to predict their targets in the premature baboon model of BPD, which included elastin (ELN), gastrin-releasing polypeptide (GRP), and connective tissue growth factor (CTGF). This approach identified highly conserved transcriptional responses to mechanical ventilation and may facilitate identification of therapeutic targets to reduce the side effects of this valuable treatment.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Christy L Avery ◽  
Praveen Sethupathy ◽  
Steven Buyske ◽  
Q. C He ◽  
Dan Y Lin ◽  
...  

The QT interval (QT) is a heritable trait and its prolongation is an established risk factor for ventricular tachyarrhythmia and sudden cardiac death. Most genetic studies of QT have examined populations of European ancestry, although the increased genetic diversity in populations of African descent provides opportunity for fine-mapping, which can help narrow association signals and identify candidates for functional characterization. We examined whether eleven previously identified QT loci comprising 6,681 variants on the Illumina Metabochip array were associated with QT in 7,516 African American participants from the Atherosclerosis Risk in Communities study and Women’s Health Initiative clinical trial. Among associated loci, we used conditional analyses and queried bioinformatics databases to identify and functionally categorize signals. We identified nine of the eleven QT loci in African American populations ( P <0.0045 under an additive genetic model adjusting for ancestry and demographic characteristics: NOS1AP, ATP1B1, SCN5A, SLC35F1, KCNH2, KCNQ1, LITAF, NDRG4, and RFFL ). We also identified two independent secondary signals in NOS1AP and ATP1B1 ( P < 7.4x10 −6 ). Conditional analyses adjusting for published loci in European populations demonstrated that eight of these eleven SNPs (nine primary; two secondary) were independent of previously reported SNPs. We then performed the first bioinformatics-based functional characterization of QT loci using the eleven primary and secondary variants and SNPs in strong LD (r 2 > 0.5) among these African American participants. Only the SCN5A locus included a non-synonymous coding variant (rs1805124, H558R, r 2 = 0.7 with primary SNP rs9871385, P = 4.7x10 −4 ). The remaining ten loci harbored variants located exclusively within non-coding regions. Specifically, three contained SNPs within candidate long-range regulatory elements in human cardiomyocytes, five were in or near annotated promoter regions, and the remaining two were in un-annotated, but highly conserved non-coding elements. Several of the QT risk alleles at these SNPs significantly alter the predicted binding affinity for transcription factors, such as TBX5 and AhR, which have been previously implicated in cardiac formation and function. In summary, the findings provide compelling evidence that the same genes influence variation in QT across global populations and that additional, independent signals exist in African Americans. Moreover, of those SNPs identified as strong candidates for functional evaluation, the majority implicate gene regulatory dysfunction in QT prolongation.


2019 ◽  
Author(s):  
Sonia Balyan ◽  
Sombir Rao ◽  
Sarita Jha ◽  
Chandni Bansal ◽  
Jaishri Rubina Das ◽  
...  

AbstractThe footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot-spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar-pair short-listed from a pool of varieties exhibiting variable thermo-sensitivity using physiological, survival and yield-related traits revealed redundant to cultivar-specific HS-regulation with more up-regulated genes for CLN1621L than CA4. The anatgonisiticly-expressing genes include enzymes; have roles in plant defense and response to different abiotic stresses. Functional characterization of three antagonistic genes by overexpression and TRV-VIGS silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis), that are up-regulated in tolerant cultivar, as positive regulators of HS-tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that is down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS-tolerance in tomato. This study identifies several novel HS-tolerance genes and provides proof of their utility in tomato-thermotolerance.HighlightNovel heat stress regulatory pathways uncovered by comparative transcriptome profiling between contrasting tomato cultivars from Indian sub-continent for improving thermotolerance. (20/30)


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11508
Author(s):  
Yubing Yong ◽  
Yue Zhang ◽  
Yingmin Lyu

Background. We have previously performed an analysis of the cold-responsive transcriptome in the mature leaves of tiger lily (Lilium lancifolium) by gene co-expression network identification. The results has revealed that a ZFHD gene, notated as encoding zinc finger homeodomain protein, may play an essential regulating role in tiger lily response to cold stress. Methods. A further investigation of the ZFHD gene (termed as LlZFHD4) responding to osmotic stresses, including cold, salt, water stresses, and abscisic acid (ABA) was performed in this study. Based on the transcriptome sequences, the coding region and 5′ promoter region of LlZFHD4 were cloned from mature tiger lily leaves. Stress response analysis was performed under continuous 4 °C, NaCl, PEG, and ABA treatments. Functional characterization of LlZFHD4 was conducted in transgenic Arabidopsis, tobacco, and yeast. Results. LlZFHD4 encodes a nuclear-localized protein consisting of 180 amino acids. The N-terminal region of LlZFHD4 has transcriptional activation activity in yeast. The 4 °C, NaCl, PEG, and ABA treatments induced the expression of LlZFHD4. Several stress- or hormone-responsive cis-acting regulatory elements (T-Box, BoxI. and ARF) and binding sites of transcription factors (MYC, DRE and W-box) were found in the core promoter region (789 bp) of LlZFHD4. Also, the GUS gene driven by LlZFHD4 promoter was up-regulated by cold, NaCl, water stresses, and ABA in Arabidopsis. Overexpression of LlZFHD4 improved cold and drought tolerance in transgenic Arabidopsis; higher survival rate and better osmotic adjustment capacity were observed in LlZFHD4 transgenic plants compared to wild type (WT) plants under 4 °C and PEG conditions. However, LlZFHD4 transgenic plants were less tolerant to salinity and more hypersensitive to ABA compared to WT plants. The transcript levels of stress- and ABA-responsive genes were much more up-regulated in LlZFHD4 transgenic Arabidopsis than WT. These results indicate LlZFHD4 is involved in ABA signaling pathway and plays a crucial role in regulating the response of tiger lily to cold, salt and water stresses.


2020 ◽  
Vol 21 (17) ◽  
pp. 5947 ◽  
Author(s):  
Hao Zhang ◽  
Shuang Li ◽  
Mengyao Shi ◽  
Sheliang Wang ◽  
Lei Shi ◽  
...  

NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) family (NPF) proteins can transport various substrates, and play crucial roles in governing plant nitrogen (N) uptake and distribution. However, little is known about the NPF genes in Brassica napus. Here, a comprehensive genome-wide systematic characterization of the NPF family led to the identification of 193 NPF genes in the whole genome of B. napus. The BnaNPF family exhibited high levels of genetic diversity among sub-families but this was conserved within each subfamily. Whole-genome duplication and segmental duplication played a major role in BnaNPF evolution. The expression analysis indicated that a broad range of expression patterns for individual gene occurred in response to multiple nutrient stresses, including N, phosphorus (P) and potassium (K) deficiencies, as well as ammonium toxicity. Furthermore, 10 core BnaNPF genes in response to N stress were identified. These genes contained 6–13 transmembrane domains, located in plasma membrane, that respond discrepantly to N deficiency in different tissues. Robust cis-regulatory elements were identified within the promoter regions of the core genes. Taken together, our results suggest that BnaNPFs are versatile transporters that might evolve new functions in B. napus. Our findings benefit future research on this gene family.


Gene Reports ◽  
2019 ◽  
Vol 16 ◽  
pp. 100402
Author(s):  
Swapnarani Nayak ◽  
Lipika Patnaik ◽  
Meenati Manjari Soren ◽  
V. Chakrapani ◽  
Shibani Dutta Mohapatra ◽  
...  

2019 ◽  
Vol 21 (3) ◽  
pp. 946-956 ◽  
Author(s):  
Zijie Shen ◽  
Yuan Lin ◽  
Quan Zou

Abstract The completion of the rice genome sequence paved the way for rice functional genomics research. Additionally, the functional characterization of transcription factors is currently a popular and crucial objective among researchers. Transcription factors are one of the groups of proteins that bind to either enhancer or promoter regions of genes to regulate expression. On the basis of several typical examples of transcription factor analyses, we herein summarize selected research strategies and methods and introduce their advantages and disadvantages. This review may provide some theoretical and technical guidelines for future investigations of transcription factors, which may be helpful to develop new rice varieties with ideal traits.


2019 ◽  
Vol 18 (5) ◽  
pp. 290-301 ◽  
Author(s):  
Christa G Toenhake ◽  
Richárd Bártfai

Abstract Malaria parasites are characterized by a complex life cycle that is accompanied by dynamic gene expression patterns. The factors and mechanisms that regulate gene expression in these parasites have been searched for even before the advent of next generation sequencing technologies. Functional genomics approaches have substantially boosted this area of research and have yielded significant insights into the interplay between epigenetic, transcriptional and post-transcriptional mechanisms. Recently, considerable progress has been made in identifying sequence-specific transcription factors and DNA-encoded regulatory elements. Here, we review the insights obtained from these efforts including the characterization of core promoters, the involvement of sequence-specific transcription factors in life cycle progression and the mapping of gene regulatory elements. Furthermore, we discuss recent developments in the field of functional genomics and how they might contribute to further characterization of this complex gene regulatory network.


Sign in / Sign up

Export Citation Format

Share Document