scholarly journals Effect of coronal plane acetabular correction on joint contact pressure in Periacetabular osteotomy: a finite-element analysis

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kenji Kitamura ◽  
Masanori Fujii ◽  
Miho Iwamoto ◽  
Satoshi Ikemura ◽  
Satoshi Hamai ◽  
...  

Abstract Background The ideal acetabular position for optimizing hip joint biomechanics in periacetabular osteotomy (PAO) remains unclear. We aimed to determine the relationship between acetabular correction in the coronal plane and joint contact pressure (CP) and identify morphological factors associated with residual abnormal CP after correction. Methods Using CT images from 44 patients with hip dysplasia, we performed three patterns of virtual PAOs on patient-specific 3D hip models; the acetabulum was rotated laterally to the lateral center-edge angles (LCEA) of 30°, 35°, and 40°. Finite-element analysis was used to calculate the CP of the acetabular cartilage during a single-leg stance. Results Coronal correction to the LCEA of 30° decreased the median maximum CP 0.5-fold compared to preoperatively (p <  0.001). Additional correction to the LCEA of 40° further decreased CP in 15 hips (34%) but conversely increased CP in 29 hips (66%). The increase in CP was associated with greater preoperative extrusion index (p = 0.030) and roundness index (p = 0.038). Overall, virtual PAO failed to normalize CP in 11 hips (25%), and a small anterior wall index (p = 0.049) and a large roundness index (p = 0.003) were associated with residual abnormal CP. Conclusions The degree of acetabular correction in the coronal plane where CP is minimized varied among patients. Coronal plane correction alone failed to normalize CP in 25% of patients in this study. In patients with an anterior acetabular deficiency (anterior wall index < 0.21) and an aspherical femoral head (roundness index > 53.2%), coronal plane correction alone may not normalize CP. Further studies are needed to clarify the effectiveness of multiplanar correction, including in the sagittal and axial planes, in optimizing the hip joint’s contact mechanics.

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Sung-Jae Park ◽  
Sung-Jae Lee ◽  
Wen-Ming Chen ◽  
Jung-Hong Park ◽  
Yong-Soo Cho ◽  
...  

Periacetabular osteotomy (PAO) is a complex surgical procedure to restore acetabular coverage in the dysplastic hip, and the amount of acetabular rotation during PAO plays a key role. Using computational simulations, this study assessed the optimal direction and amount of the acetabular rotation in three dimensions for a patient undergoing PAO. Anatomy-specific finite element (FE) models of the hip were constructed based on clinical CT images. The calculated acetabular rotation during PAO were 9.7°, 18°, and 4.3° in sagittal, coronal, and transverse planes, respectively. Based on the actual acetabular rotations, twelve postoperative FE models were generated. An optimal position was found by gradually varying the amount of the acetabular rotations in each anatomical plane. The coronal plane was found to be the principal rotational plane, which showed the strongest effects on joint contact pressure compared to other planes. It is suggested that rotation in the coronal plane of the osteotomized acetabulum is one of the primary surgical parameters to achieve the optimal clinical outcome for a given patient.


2021 ◽  
Author(s):  
Paul T. Smith ◽  
Daniel J. Griffin

Abstract To ensure safe and reliable operation, steam turbine casings must have acceptable stresses and maintain sealing when subjected to internal pressures and temperatures. To show turbine casings acceptable, analysts conduct structural evaluations using finite element analysis (FEA) techniques. This paper outlines the analytical methods used to perform these types of analyses, provides analysis examples, and summarizes the process to create pressure and temperature limit maps. Finite element models of the main casing and steam chest are used to determine stresses and sealing of the casing horizontal split line and steam chest cover during normal operation. The sealing evaluations consider the sealing capabilities of the bolted joints when the casing is subjected to internal steam pressure and consider the effects of bolt stress relaxation at elevated temperatures, joint contact surface separation, and penetration of the internal pressure into the sealing surface. The acceptance criteria for the bolted joint sealing is based on the minimum width of the contacting surface and the minimum joint contact pressure. A series of analyses were conducted on the various models to create pressure and temperature limit maps, so that the design can be applied for the appropriate conditions. These maps plot maximum allowable working pressure (MAWP) versus maximum allowable working temperature (MAWT), and allow an application engineer to easily determine the acceptability of the casing for a particular application. An explanation of the process used to create the limit maps is presented.


Sign in / Sign up

Export Citation Format

Share Document