scholarly journals Deep learning in cancer diagnosis, prognosis and treatment selection

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Khoa A. Tran ◽  
Olga Kondrashova ◽  
Andrew Bradley ◽  
Elizabeth D. Williams ◽  
John V. Pearson ◽  
...  

AbstractDeep learning is a subdiscipline of artificial intelligence that uses a machine learning technique called artificial neural networks to extract patterns and make predictions from large data sets. The increasing adoption of deep learning across healthcare domains together with the availability of highly characterised cancer datasets has accelerated research into the utility of deep learning in the analysis of the complex biology of cancer. While early results are promising, this is a rapidly evolving field with new knowledge emerging in both cancer biology and deep learning. In this review, we provide an overview of emerging deep learning techniques and how they are being applied to oncology. We focus on the deep learning applications for omics data types, including genomic, methylation and transcriptomic data, as well as histopathology-based genomic inference, and provide perspectives on how the different data types can be integrated to develop decision support tools. We provide specific examples of how deep learning may be applied in cancer diagnosis, prognosis and treatment management. We also assess the current limitations and challenges for the application of deep learning in precision oncology, including the lack of phenotypically rich data and the need for more explainable deep learning models. Finally, we conclude with a discussion of how current obstacles can be overcome to enable future clinical utilisation of deep learning.

2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 146 ◽  
Author(s):  
Guanming Wu ◽  
Eric Dawson ◽  
Adrian Duong ◽  
Robin Haw ◽  
Lincoln Stein

High-throughput experiments are routinely performed in modern biological studies. However, extracting meaningful results from massive experimental data sets is a challenging task for biologists. Projecting data onto pathway and network contexts is a powerful way to unravel patterns embedded in seemingly scattered large data sets and assist knowledge discovery related to cancer and other complex diseases. We have developed a Cytoscape app called “ReactomeFIViz”, which utilizes a highly reliable gene functional interaction network and human curated pathways from Reactome and other pathway databases. This app provides a suite of features to assist biologists in performing pathway- and network-based data analysis in a biologically intuitive and user-friendly way. Biologists can use this app to uncover network and pathway patterns related to their studies, search for gene signatures from gene expression data sets, reveal pathways significantly enriched by genes in a list, and integrate multiple genomic data types into a pathway context using probabilistic graphical models. We believe our app will give researchers substantial power to analyze intrinsically noisy high-throughput experimental data to find biologically relevant information.


2020 ◽  
pp. 1826-1838
Author(s):  
Rojalina Priyadarshini ◽  
Rabindra K. Barik ◽  
Chhabi Panigrahi ◽  
Harishchandra Dubey ◽  
Brojo Kishore Mishra

This article describes how machine learning (ML) algorithms are very useful for analysis of data and finding some meaningful information out of them, which could be used in various other applications. In the last few years, an explosive growth has been seen in the dimension and structure of data. There are several difficulties faced by conventional ML algorithms while dealing with such highly voluminous and unstructured big data. The modern ML tools are designed and used to deal with all sorts of complexities of data. Deep learning (DL) is one of the modern ML tools which are commonly used to find the hidden structure and cohesion among these large data sets by giving proper training in parallel platforms with intelligent optimization techniques to further analyze and interpret the data for future prediction and classification. This article focuses on the use of DL tools and software which are used in past couple of years in various areas and especially in the area of healthcare applications.


Author(s):  
Zheng-Hua Tan

The explosive increase in computing power, network bandwidth and storage capacity has largely facilitated the production, transmission and storage of multimedia data. Compared to alpha-numeric database, non-text media such as audio, image and video are different in that they are unstructured by nature, and although containing rich information, they are not quite as expressive from the viewpoint of a contemporary computer. As a consequence, an overwhelming amount of data is created and then left unstructured and inaccessible, boosting the desire for efficient content management of these data. This has become a driving force of multimedia research and development, and has lead to a new field termed multimedia data mining. While text mining is relatively mature, mining information from non-text media is still in its infancy, but holds much promise for the future. In general, data mining the process of applying analytical approaches to large data sets to discover implicit, previously unknown, and potentially useful information. This process often involves three steps: data preprocessing, data mining and postprocessing (Tan, Steinbach, & Kumar, 2005). The first step is to transform the raw data into a more suitable format for subsequent data mining. The second step conducts the actual mining while the last one is implemented to validate and interpret the mining results. Data preprocessing is a broad area and is the part in data mining where essential techniques are highly dependent on data types. Different from textual data, which is typically based on a written language, image, video and some audio are inherently non-linguistic. Speech as a spoken language lies in between and often provides valuable information about the subjects, topics and concepts of multimedia content (Lee & Chen, 2005). The language nature of speech makes information extraction from speech less complicated yet more precise and accurate than from image and video. This fact motivates content based speech analysis for multimedia data mining and retrieval where audio and speech processing is a key, enabling technology (Ohtsuki, Bessho, Matsuo, Matsunaga, & Kayashi, 2006). Progress in this area can impact numerous business and government applications (Gilbert, Moore, & Zweig, 2005). Examples are discovering patterns and generating alarms for intelligence organizations as well as for call centers, analyzing customer preferences, and searching through vast audio warehouses.


2017 ◽  
pp. 83-99
Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


2019 ◽  
Vol 7 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Ye Yuan ◽  
Guijun Ma ◽  
Cheng Cheng ◽  
Beitong Zhou ◽  
Huan Zhao ◽  
...  

Abstract The manufacturing sector is envisioned to be heavily influenced by artificial-intelligence-based technologies with the extraordinary increases in computational power and data volumes. A central challenge in the manufacturing sector lies in the requirement of a general framework to ensure satisfied diagnosis and monitoring performances in different manufacturing applications. Here, we propose a general data-driven, end-to-end framework for the monitoring of manufacturing systems. This framework, derived from deep-learning techniques, evaluates fused sensory measurements to detect and even predict faults and wearing conditions. This work exploits the predictive power of deep learning to automatically extract hidden degradation features from noisy, time-course data. We have experimented the proposed framework on 10 representative data sets drawn from a wide variety of manufacturing applications. Results reveal that the framework performs well in examined benchmark applications and can be applied in diverse contexts, indicating its potential use as a critical cornerstone in smart manufacturing.


2021 ◽  
Author(s):  
Jian Wang ◽  
Nikolay V Dokholyan

In recent years, numerous structure-free deep-learning-based neural networks have emerged aiming to predict compound-protein interactions for drug virtual screening. Although these methods show high prediction accuracy in their own tests, we find that they are not generalizable to predict interactions between unknown proteins and unknown small molecules, thus hindering the utilization of state-of-the-art deep learning techniques in the field of virtual screening. In our work, we develop a compound-protein interaction predictor, YueL, which can predict compound-protein interactions with high generalizability. Upon comprehensive tests on various data sets, we find that YueL has the ability to predict interactions between unknown compounds and unknown proteins. We anticipate our work can motivate broad application of deep learning techniques for drug virtual screening to supersede the traditional docking and cheminformatics methods.


Author(s):  
Qusay Abdullah Abed ◽  
Osamah Mohammed Fadhil ◽  
Wathiq Laftah Al-Yaseen

In general, multidimensional data (mobile application for example) contain a large number of unnecessary information. Web app users find it difficult to get the information needed quickly and effectively due to the sheer volume of data (big data produced per second). In this paper, we tend to study the data mining in web personalization using blended deep learning model. So, one of the effective solutions to this problem is web personalization. As well as, explore how this model helps to analyze and estimate the huge amounts of operations. Providing personalized recommendations to improve reliability depends on the web application using useful information in the web application. The results of this research are important for the training and testing of large data sets for a map of deep mixed learning based on the model of back-spread neural network. The HADOOP framework was used to perform a number of experiments in a different environment with a learning rate between -1 and +1. Also, using the number of techniques to evaluate the number of parameters, true positive cases are represent and fall into positive cases in this example to evaluate the proposed model.


2018 ◽  
Vol 3 ◽  
Author(s):  
Andreas Baumann

Machine learning is a powerful method when working with large data sets such as diachronic corpora. However, as opposed to standard techniques from inferential statistics like regression modeling, machine learning is less commonly used among phonological corpus linguists. This paper discusses three different machine learning techniques (K nearest neighbors classifiers; Naïve Bayes classifiers; artificial neural networks) and how they can be applied to diachronic corpus data to address specific phonological questions. To illustrate the methodology, I investigate Middle English schwa deletion and when and how it potentially triggered reduction of final /mb/ clusters in English.


Sign in / Sign up

Export Citation Format

Share Document