scholarly journals Differential Expression of Estrogen Receptors in the Hypothalamus Underlies the Bimodal Effects of Estradiol on Luteinizing Hormone Release

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A536-A537
Author(s):  
Patricia Costa Henriques ◽  
Nayara Soares Sena Aquino ◽  
Roberta Araújo-Lopes ◽  
Juneo Freitas Silva ◽  
Candido Celso Coimbra ◽  
...  

Abstract Low 17β-estradiol (E2) levels suppress luteinizing hormone (LH) release, while high E2 stimulates an LH surge in the positive-feedback required for ovulation. Kisspeptin (Kp) neurons in the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei of hypothalamus have been implicated in E2 positive- and negative-feedback effects, respectively. However, how E2 differentially regulates these two neuronal populations remains unknown. We investigated whether neurons in the AVPV and ARC are differently responsive to changes in E2 levels and the regulatory role of estrogen receptors (ERs). Ovariectomized (OV) rats received oil or E2 at doses of 4 (OVE-4), 40 (OVE-40), or 80 (OVE-80) µg/kg. Rats on diestrus (DI) and proestrus (PRO) were used as physiological controls. OV rats were also treated with 0.02, 0.2 or 2.0 mg/kg of propyl pyrazole triol (PPT), or 6 mg/kg of diarylpropionitrile (DPN). Serial blood samples were collected for hormonal measurements. Brains were processed for immunohistochemistry and qPCR analyses in the AVPV and ARC. The E2 doses gradually increased plasma E2, with PRO levels being attained in OVE-80 rats. OVE-80 rats displayed a PRO-like LH surge, while LH levels were constantly suppressed in OVE-4 rats. Progesterone receptor (PR) was used as an index of E2 responsiveness. PR expression was increased in the AVPV of PRO and OVE-80 rats, associated with c-Fos expression and occurrence of LH surge. In the ARC, both low and high E2 induced PR expression and reduced the number of Kp-immunoreactive (ir) neurons, consistent with the negative feedback effects on LH. E2 at 4 or 80 µg/kg equally induced PR expression in 90% of ARC Kp-ir neurons. Despite the higher sensitivity to E2 in the ARC, the percentage of neurons expressing ERα was lower in the ARC compared with AVPV. However, Esr1 expression was 2-fold higher in the ARC than in AVPV for low E2 levels, whereas both Esr1 and Esr2 were more expressed in the AVPV under high E2 status. Notably, Esr1/Esr2 ratio was twice as high in the ARC as in the AVPV regardless of E2 levels, suggesting a stronger ERβ inhibition over ERα in the AVPV. Accordingly, ERα selective activation with PPT increased PR in the ARC at the doses of 0.2 and 2.0 mg/kg, reducing plasma LH, while only the highest dose was able to stimulate PR expression in the AVPV. ERβ activation with DPN, in turn, had no effect in OV rats but amplified the induction of AVPV PR and the size of the LH surge in OVE-80 rats. Thus, we provide evidence that ARC and AVPV neurons are responsive to low and high E2 levels, respectively. ARC is 10 times more sensitive to ERα activation than AVPV, whereas ERβ positively modulates AVPV responsiveness to high E2. These differential responses to E2 seem to be related to differences in the relative Esr1 and Esr2 expression in the ARC and AVPV. Our findings suggest that hypothalamic differences in the relative expression of ERs play a key role in the bimodal regulation of LH release by E2.

Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4200-4213 ◽  
Author(s):  
Cleyde V. Helena ◽  
Natalia Toporikova ◽  
Bruna Kalil ◽  
Andrea M. Stathopoulos ◽  
Veronika V. Pogrebna ◽  
...  

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5406-5414 ◽  
Author(s):  
Christina M. Merkley ◽  
Katrina L. Porter ◽  
Lique M. Coolen ◽  
Stanley M. Hileman ◽  
Heather J. Billings ◽  
...  

Abstract KNDy (kisspeptin/neurokinin B/dynorphin) neurons of the arcuate nucleus (ARC) appear to mediate the negative feedback actions of estradiol and are thought to be key regulators of pulsatile LH secretion. In the ewe, KNDy neurons may also be involved with the positive feedback actions of estradiol (E2) to induce the LH surge, but the role of kisspeptin neurons in the preoptic area (POA) remains unclear. The goal of this study was to identify which population(s) of kisspeptin neurons is (are) activated during the LH surge and in response to the removal of E2-negative feedback, using Fos as an index of neuronal activation. Dual-label immunocytochemistry for kisspeptin and Fos was performed on sections containing the ARC and POA from ewes during the luteal phase of the estrous cycle, or before or after the onset of the LH surge (experiment 1), and from ovary-intact, short-term (24 h) and long-term (>30 d) ovariectomized (OVX) ewes in anestrus (experiment 2). The percentage of kisspeptin neurons expressing Fos in both the ARC and POA was significantly higher during the LH surge. In contrast, the percentage of kisspeptin/Fos colocalization was significantly increased in the ARC, but not POA, after both short- and long-term E2 withdrawal. Thus, POA kisspeptin neurons in the sheep are activated during, and appear to contribute to, E2-positive feedback, whereas ARC kisspeptin (KNDy) neurons are activated during both surge and pulsatile modes of secretion and likely play a role in mediating both positive and negative feedback actions of E2 on GnRH secretion in the ewe.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xian-Hua Lin ◽  
Geffen Lass ◽  
Ling-Si Kong ◽  
Hui Wang ◽  
Xiao-Feng Li ◽  
...  

Traditionally, the anteroventral periventricular (AVPV) nucleus has been the brain area associated with luteinizing hormone (LH) surge secretion in rodents. However, the role of the other population of hypothalamic kisspeptin neurons, in the arcuate nucleus (ARC), has been less well characterized with respect to surge generation. Previous experiments have demonstrated ARC kisspeptin knockdown reduced the amplitude of LH surges, indicating that they have a role in surge amplification. The present study used an optogenetic approach to selectively stimulate ARC kisspeptin neurons and examine the effect on LH surges in mice with different hormonal administrations. LH level was monitored from 13:00 to 21:00 h, at 30-minute intervals. Intact Kiss-Cre female mice showed increased LH secretion during the stimulation period in addition to displaying a spontaneous LH surge around the time of lights off. In ovariectomized Kiss-Cre mice, optogenetic stimulation was followed by a surge-like secretion of LH immediately after the stimulation period. Ovariectomized Kiss-Cre mice with a low dose of 17β-estradiol (OVX+E) replacement displayed a surge-like increase in LH release during period of optic stimulation. No LH response to the optic stimulation was observed in OVX+E mice on the day of estradiol benzoate (EB) treatment (day 1). However, after administration of progesterone (day 2), all OVX+E+EB+P mice exhibited an LH surge during optic stimulation. A spontaneous LH surge also occurred in these mice at the expected time. Taken together, these results help to affirm the fact that ARC kisspeptin may have a novel amplificatory role in LH surge production, which is dependent on the gonadal steroid milieu.


1988 ◽  
Vol 255 (4) ◽  
pp. E469-E474
Author(s):  
J. P. Kile ◽  
M. S. Amoss

It has been proposed that gonadotropin-releasing hormone (GnRH) stimulates Ca2+ entry by activation of voltage-independent, receptor-mediated Ca2+ channels in the rat gonadotroph. Little work has been done on the role of calcium in GnRH-induced luteinizing hormone (LH) release in species other than the rat. Therefore, this study was done to compare the effects of agents that alter Ca2+ or Na+ entry on LH release from calf anterior pituitary primary cells in culture. GnRH (100 ng/ml), Ca2+ ionophore A23187 (2.5 microM), and the depolarizing agent ouabain (0.1-10 microM) all produced significant increases (P less than 0.05) in LH release; these effects were significantly reduced when the cells were preincubated with the organic Ca2+ channel blockers nifedipine (1-10 microM) and verapamil (1-10 microM) and with Co2+ (0.01-1 mM). The effect of ouabain was inhibited by tetrodotoxin (TTX; 1-10 nM) as well as by nifedipine at 0.1-10 microM. In contrast to its effect on rat pituitary LH release, TTX significantly inhibited GnRH-stimulated LH release at 1-100 nM. These results suggest that GnRH-induced LH release may employ Ca2+ as a second messenger in bovine gonadotrophs and support recent speculation that GnRH-induced Ca2+ mobilization may in part be voltage dependent.


1970 ◽  
Vol 46 (1) ◽  
pp. 1-7 ◽  
Author(s):  
S. TALEISNIK ◽  
M. E. VELASCO ◽  
J. J. ASTRADA

SUMMARY The influence that the interruption of the neural afferents to the hypothalamus exerts on ovulation and on the release of luteinizing hormone (LH) was studied in the rat. Animals with retrochiasmatic sections interrupting the neural connexions between the medial hypothalamus and the preoptic area (POA) showed constant oestrus and failed to ovulate. Animals in which the dorsal neural afferents to the POA were transected had oestrous cycles and ovulated normally. The positive feedback effect of progesterone on LH release in spayed animals primed either with 20 μg. oestradiol benzoate or 2·5 mg. testosterone propionate 3 days before was studied. Transection of the dorsal afferents to the POA favoured an increase in plasma LH, but in animals with retrochiasmatic sections the response was abolished. However, the negative feedback effect of ovarian steroids operated after both types of transection because an increase in plasma LH occurred after ovariectomy. It is concluded that the negative feedback effect of ovarian steroids acts on the medial hypothalamus which can maintain a tonic release of gonadotrophins in the absence of steroids. In contrast, the POA involved in the positive feedback effect of progesterone is concerned with the phasic release of LH.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Elke Dworatzek ◽  
Shokoufeh Mahmoodzadeh ◽  
Sandra Kunze ◽  
Vera Regitz-Zagrosek

Clinical and animal studies showed in female pressure-overloaded hearts less cardiac fibrosis and collagen I and III gene expression compared to males, suggesting an inhibitory effect of 17β-Estradiol (E2) on collagens. Therefore we investigated the role of E2 and estrogen receptors (ER) on collagen I and III expression in isolated rat cardiac fibroblasts from both sexes. Cardiac fibroblasts were isolated from adult male and female Wistar rats, and treated with E2 (10-8M), vehicle, ERα and ERβ-agonist (10-7M) and/or pre-treated with ICI 182,780 (10-5M) for 24h. Cellular localization of ER in cardiac fibroblasts with/without E2 was detected by immunofluorescence staining, and expression of both ER was determined by western blot. Expression of collagen I and III was determined by qRT-PCR and western blot. E2-treatment led to a nuclear translocation of ERα and ERβ in cardiac fibroblasts, suggesting the functional activity of ER as transcription factors. Furthermore in cardiac fibroblasts from female rats E2 led to a significant down-regulation of collagen I and III gene and protein expression. In contrast there was a significant increase of collagen I and III levels in fibroblasts isolated from male rat hearts by E2. E2-effect could be inhibited by ICI 182, 780 indicating the involvement of ER. In cardiac fibroblasts from female rats, ERα-agonist treatment led to a significant down-regulation of collagen I and III mRNA level, but ERβ-agonist had no effects. In contrast, ERβ-agonist treatment of cardiac fibroblasts from males increased collagen I and III mRNA, but no changes with ERα agonist-treatment were detected. ERα protein levels displayed no sex differences at basal level. After E2-treatment ERα protein was up-regulated in male cells, but decreased in cardiac fibroblasts from females. ERβ protein was higher in female cells compared to males, but the expression was not regulated by E2 in both sexes. Sex-specific regulation of collagen I and III expression by E2 in cardiac fibroblasts might be responsible for sex-differences in cardiac fibrosis. This might be due to sexually dimorphic ER expression and regulation. Understanding how E2 and ER mediate sex-differences in cardiac remodeling may help to design sex-specific pharmacological interventions.


1985 ◽  
Vol 108 (1) ◽  
pp. 31-35
Author(s):  
J. G. Herndon ◽  
M. S. Blank ◽  
D. R. Mann ◽  
D. C. Collins ◽  
J.J. Turner

Abstract. Suppression of luteinizing hormone (LH) by sc implanted oestradiol-17ß (E2) pellets was examined in 4 ovariectomized female rhesus monkeys during the breeding season, the non-breeding season and during the transition between the breeding and non-breeding season. Immunoreactive LH was suppressed to 58, 78 and 75% of untreated levels for the respective seasonal conditions. Bioactive LH was suppressed to 29, 49 and 33% of baseline. Bioactive LH (determined by testoster-one release from rat interstital cells) was significantly correlated (r = 0.84) with immunoactive LH from the same samples. It is concluded that E2 treatment of ovariectomized female rhesus monkeys results in suppressed levels of LH, regardless of the time of year.


1977 ◽  
Vol 85 (1) ◽  
pp. 18-24 ◽  
Author(s):  
James A. Clemens ◽  
Frank C. Tinsley ◽  
Ray W. Fuller

ABSTRACT The possible participation of dopamine in the neural events that lead to the pro-oestrous surge of luteinizing hormone (LH) was investigated utilizing a dopaminergic ergoline derivative (lergotrile mesylate). Administration of reserpine (2.0 mg/kg, ip) to rats on the day of pro-oestrus depicted brain dopamine and norepinephrine and prevented the LH surge and ovulation. Administration of lergotrile mesylate prior to or at the same time as reserpine prevented the inhibitory effects of reserpine on LH release and on ovulation in about half of the animals. When lergotrile mesylate was given on the morning of pro-oestrus, the LH surge was advanced. The results indicate that there is a dopaminergic component in the series of neural events that precede the surge of LH on prooestrus, and that the dopaminergic stimulus precedes the LH surge by about 4–5 h.


Sign in / Sign up

Export Citation Format

Share Document