Combined IFN-γ–Endostatin Gene Therapy and Radiotherapy Attenuates Primary Breast Tumor Growth and Lung Metastases via Enhanced CTL and NK Cell Activation and Attenuated Tumor Angiogenesis in a Murine Model

2009 ◽  
Vol 16 (5) ◽  
pp. 1403-1411 ◽  
Author(s):  
Lin Lin Liu ◽  
Myles J. Smith ◽  
Bao Sheng Sun ◽  
Guan Jun Wang ◽  
H. Paul Redmond ◽  
...  
2002 ◽  
Vol 76 (11) ◽  
pp. 5692-5700 ◽  
Author(s):  
Huang-Ge Zhang ◽  
Jinfu Xie ◽  
Liang Xu ◽  
Pingar Yang ◽  
Xin Xu ◽  
...  

ABSTRACT A major limitation of adenovirus (Ad) gene therapy product expression in the liver is subsequent elimination of the hepatocytes expressing the gene therapy product. This elimination is caused by both necrosis and apoptosis related to the innate and cell-mediated immune response to the Ad. Apoptosis of hepatocytes can be induced by the innate immune response by signaling through death domain receptors on hepatocytes including the tumor necrosis factor alpha (TNF-α) receptor (TNFR), Fas, and death domain receptors DR4 and DR5. We have previously shown that blocking signaling through TNFR enhances and prolongs gene therapy product expression in the liver. In the present study, we constructed an Ad that produces a soluble DR5-Fc (AdsDR5), which is capable of neutralizing TNF-related apoptosis-inducing ligand (TRAIL). AdsDR5 prevents TRAIL-mediated apoptosis of CD3-activated T cells and decreases hepatocyte apoptosis after AdCMVLacZ administration and enhances the level and duration of lacZ transgene expression in the liver. In addition to blocking TRAIL and directly inhibiting apoptosis, AdsDR5 decreases production of gamma interferon (IFN-γ) and TNF-α and decreases NK cell activation, all of which limit Ad-mediated transgene expression in the liver. These results indicate that (i) AdsDR5 produces a DR5-Fc capable of neutralizing TRAIL, (ii) AdsDR5 can reduce activation of NK cells and reduce induction of IFN-γ and TNF-α after Ad administration, and (iii) administration of AdsDR5 can enhance Ad gene therapy in the liver.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A616-A616
Author(s):  
Shannon Keisling

BackgroundOsteosarcoma is the most common primary bone tumor and has a peak incidence in adolescence. The prognosis for recurrent and metastatic disease is poor and over one-third of patients with localized disease at presentation will recur after treatment with metastases. LOFU produces non-lethal, transient mechanical and thermal stress to cause protein misfolding, endoplasmic reticulum stress, and induction of the heat shock response (refs). Trabectedin is directly tumoricidal through inhibiting transcription and DNA repair, modulates the tumor microenvironment by selectively depleting M2 macrophages, and inhibits the transcription factor heat shock factor 1 (HSF1) (refs). We hypothesized that combination therapy would synergistically intensify the unfolded protein response and heat shock response to facilitate antigen presenting cell activation and efficient presentation to cytotoxic T cells. To examine this, experiments are being conducted to investigate the effect of LOFU in combination with trabectedin and/or radiation therapy (RT) in a murine model of osteosarcoma.MethodsPalpable (<5 mm) subcutaneous K7M2 murine osteosarcoma tumors in BALB/c mice were treated with a) LOFU, b) trabectedin (intravenous (IV) or intratumoral (IT)), c) LOFU + trabectedin, and d) radiation. Tumor growth (ANOVA (Kruskal-Wallis) with Dunn’s test for multiple comparisons), pulmonary metastases (Fisher’s exact test) and survival (Kaplan-Meier) were measured and analyzed in GraphPad Prism.ResultsMean tumor volume in the combination therapy group (428 mm3) was less than nontreated controls (887 mm3), LOFU alone (670 mm3), trabectedin alone (1218 mm3, p=0.0386). Radiation therapy resulted in complete ablation of the tumors. None of the combination therapy mice had grossly detectable lung metastases at time of death but metastases were present in the trabectedin only (20%), LOFU only (50%), and control (50%) groups (not statistically significant).ConclusionsCombination therapy with trabectedin and LOFU yielded smaller tumor size and fewer pulmonary metastases compared to individual therapies alone.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Vivian Vasconcelos Costa ◽  
Weijian Ye ◽  
Qingfeng Chen ◽  
Mauro Martins Teixeira ◽  
Peter Preiser ◽  
...  

ABSTRACT Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo, identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control virus infection. These results show a critical role of human NK cells in controlling DENV infection in vivo and reveal the sequence of molecular and cellular events that activate NK cells to control dengue virus infection.


2020 ◽  
Vol 55 (5) ◽  
pp. 1802422
Author(s):  
Justine Devulder ◽  
Cécile Chenivesse ◽  
Valérie Ledroit ◽  
Stéphanie Fry ◽  
Pierre-Emmanuel Lobert ◽  
...  

Rhinovirus infections are the main cause of asthma exacerbations. As natural killer (NK) cells are important actors of the antiviral innate response, we aimed at evaluating the functions of NK cells from severe asthma patients in response to rhinovirus-like molecules or rhinoviruses.Peripheral blood mononuclear cells from patients with severe asthma and healthy donors were stimulated with pathogen-like molecules or with the rhinoviruses (RV)-A9 and RV-2. NK cell activation, degranulation and interferon (IFN)-γ expression were analysed.NK cells from severe asthma patients were less cytotoxic than those from healthy donors in response to toll-like receptor (TLR)3, TLR7/8 or RV-A9 but not in response to RV-2 stimulation. Furthermore, when cultured with interleukin (IL)-12+IL-15, cytokines which are produced during viral infections, NK cells from patients with severe asthma were less cytotoxic and expressed less IFN-γ than NK cells from healthy donors. NK cells from severe asthmatics exhibited an exhausted phenotype, with an increased expression of the checkpoint molecule Tim-3.Together, our findings indicate that the activation of NK cells from patients with severe asthma may be insufficient during some but not all respiratory infections. The exhausted phenotype may participate in NK cell impairment and aggravation of viral-induced asthma exacerbation in these patients.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 106-106
Author(s):  
Michelle Gleason ◽  
Todd Lenvik ◽  
Valarie McCullar ◽  
Sarah Cooley ◽  
Michael Verneris ◽  
...  

Abstract Abstract 106 NK cells are an attractive option for immunotherapy as they do not require pre-sensitization for anti-tumor activity and do not induce graft versus host disease (GvHD) in an allogeneic transplant setting. The potential of NK cells in controlling human hematological malignancies has been increasingly recognized in recent years, as the adoptive transfer of alloreactive NK cells in hematopoietic cell transplantation (HCT) clinical trials have demonstrated therapeutic anti-leukemia effects. NK cell function is regulated by the integration of antagonist signals received from cell surface activating and inhibitory receptors. Tim-3 is a novel immune receptor that is a member of the T cell immunoglobulin and mucin-containing domain (TIM) family of glycoproteins. While its role in T cells and antigen presenting cells has been described, little is known about its function in human NK cells. While Tim-3 is present on a variety of immune cells, resting NK cells constitutively express Tim-3 compared to other lymphocyte populations (NK: 73±3%; NKT: 6±1%; T: 1±1%; n=14) and we hypothesized that Tim-3 may be important in mediating NK cell function. The unique subset of cytokine producing CD56Bright NK cells exhibited significantly lower resting Tim-3 expression compared to CD56Dim NK cells (53±3% vs. 75±3%; p<0.001, n=14). Distinct Tim-3 expression patterns were found on resting CD56Dim NK cells and activation with low dose IL-12 (1ng/mL) and IL-18 (10ng/mL), intended to more closely mimic physiologic conditions, resulted in further differentiation of this unique expression pattern dividing NK cells into 4 distinct populations: Tim-3 was homogeneously up-regulated on all CD56Bright NK cells after activation while CD56Dim NK cells were further stratified into 3 defined populations with Tim-3hi, Tim-3lo and Tim-3neg expression. The only identified ligand of Tim-3 is galectin-9 (Gal-9), a β-galactoside binding lectin, which is expressed on a wide range of healthy and malignant cells. To investigate the potential function of Tim-3, an expression vector containing human Gal-9 was transduced into K562 and Raji cells, both without endogenous Gal-9 expression. Resting NK cytotoxicity (51Cr release) was found to be increased in the presence of Gal-9 compared to the non-Gal-9 expressing targets [E:T=0.7:1, K562 vs. K562-Gal-9: 25±3% vs. 33±3% (n=8, p<0.05); E:T=20:1, Raji vs. Raji-Gal-9: 8±1% vs. 17±2% (n=4, p<0.05)]. Analysis of CD107a degranulation showed that resting Tim-3+ CD56Bright cells were more functional against Gal-9 expressing targets than Tim-3− CD56Bright cells, suggesting that Tim-3 might also play a role in IFN-γ production. To further investigate this, resting NK cells were activated with low-dose IL-12/IL-18 overnight and IFN-γ levels were measured in response to soluble rhGal-9 (0, 2.5, 5, 10 and 20nM). Exposure to soluble rhGal-9 alone without IL-12/IL-18 did not induce IFN-γ production. For both the CD56Bright and CD56Dim IL-12/IL-18 activated NK populations, only Tim-3+ NK cells displayed a dose dependent increase in IFN-γ production upon exposure to soluble rhGal-9 compared to Tim-3− NK cells. To understand the relevance of the distinct Tim-3 populations circulating in resting blood, CD56Bright, CD56Dim/Tim-3hi, CD56Dim/Tim-3lo and CD56Dim/Tim-3neg populations were sorted, cultured overnight in IL-12/IL-18 and exposed to soluble rhGal-9. Results showed the Tim-3 expressing populations contain the predominant IFN-γ producing cells that were responsive to rhGal-9 (results for the sorted CD56Dim/Tim-3lo population shown in the figure below). This increase in IFN-γ production within the Tim-3 expressing NK cell populations was abrogated by the addition of β-lactose, a β-galactoside that binds and blocks Gal-9 activity. Lastly, Western blot and immunohistochemistry analysis of human primary acute leukemia blasts revealed high Gal-9 expression. As the presence of ligands for NK cell activating receptors on tumors provide an important prerequisite for NK cell activation and effector function, we show a novel functional role for the receptor Tim-3 in human NK cell biology in the presence of its ligand Gal-9. We, therefore, propose a model where constitutively expressed Tim-3 is up-regulated by NK cell activation and effector function is enhanced by Tim-3/Gal-9 interaction, which may potentiate the elimination of Gal-9 positive tumors by NK cells. Disclosures: Niki: GalPharma: Membership on an entity's Board of Directors or advisory committees. Hirashima:GalPharma: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 16-16 ◽  
Author(s):  
Kathrin Schönberg ◽  
Janna Rudolph ◽  
Isabelle Cornez ◽  
Peter Brossart ◽  
Dominik Wolf

Abstract Introduction We recently demonstrated that ruxolitinib (INCB018424), the first approved JAK1/JAK2 inhibitor for treatment of myelofibrosis (MF), exerts potent anti-inflammatory activity. This may at least in part explain higher infection rates observed in ruxolitinib-treated patients. NK cells are critical for cancer-immune surveillance and cytokine-mediated signals are central for proper NK cell activation. We here aimed to characterize in detail the effects of JAK1/2 inhibition on human NK cells. Methods Highly purified CD56+ NK cells were isolated from human peripheral buffy coats by magnetic bead isolation and subsequently exposed to increasing concentrations of ruxolitinib (0.1-10 µM). Cytokine (1000U/ml IL-2, 25ng/ml IL-15)-induced NK cell proliferation was analyzed by CFSE dilution. Phenotypic and functional NK cell activation markers (NKp46, NKG2D, Granzyme B, CD16, and CD69) were analyzed by flow cytometry (including CD107a expression for degranulation). NK cell function was tested by flow-cytometry-based killing assays and quantification of IFN-γ production upon stimulation with either MHC class I-deficient K562 target cells or cytokines (IL-12, IL-18). In addition, phenotypic and functional analyses were also tested during NK receptor activation via plate-bound activating NKp46 antibodies. Signaling events were analyzed by Western Blot analysis to detect phosphorylation of JAK1 and JAK2 as well as by applying phospho-flow technology to evaluate ruxolitinib-mediated changes of cytokine-dependent signalling cascades (pS6, pSTAT1, pSTAT3, pSTAT5, pERK, pAKT, pP38, and pZAP70). Results Our results demonstrate provide first evidence that ruxolitinib profoundly affects cytokine-induced NK cell activation. This includes a significant and dose-dependent reduction of NK cell proliferation, reduced induction of activation-associated surface markers (including NKp46, NKG2D, Granzyme B, CD16, CD69) as well as impaired killing activity against the classical NK target cell line K562. In addition, all main functional activities of NK cells are down-regulated as shown by reduced cytotoxic capacity, impaired degranulation and IFN-γ production. After wash-out, the inhibitory effects of ruxolitinib on NK cells are fully reversible, as shown by proper re-activation by cytokines. In contrast to cytokine-mediated NK cell activation, stimulation via the NK-specific receptor NKp46 are not affected by ruxolitinib. Of note, ruxolitinib does not affect NK cell viability. On a molecular level, phospho-flow analyses revealed that cytokine associated signaling events, such as phosphorylation of STAT5 and S6 were dose-dependently reduced by ruxolitinib in primary human NK cells. Conclusions Ruxolitinib strongly inhibits NK cell activation leading to impaired proliferation and functional activity. Experiments verifying these effects in patients are currently ongoing and will be presented at the meeting. Our findings may have important clinical implications, when considering the application of ruxolitinib as GvHD therapy, because NK cells are critically involved in the GvL effect after allogeneic stem cell transplantation. Disclosures: Wolf: Novartis: Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1764-1764 ◽  
Author(s):  
Jens Pahl ◽  
Uwe Reusch ◽  
Thorsten Gantke ◽  
Anne Kerber ◽  
Joachim Koch ◽  
...  

Abstract Introduction: AFM13 is an NK-cell engaging CD30/CD16A bispecific tetravalent TandAb antibody currently in phase 2 clinical development in Hodgkin lymphoma (HL) and other CD30+ malignancies. It engages NK-cells through CD16A with high affinity and specificity and confers significantly stronger NK-cell activation compared to other therapeutic antibodies. We have previously shown synergistic efficacy when NK-cell activation by AFM13 is combined with check-point modulation such as anti-PD-1 treatment, which is known to unleash T cell and NK-cell activity. The goal of this study was to identify further candidates for combination treatments and biomarkers that potentially indicate NK-cell responses to AFM13 treatment. Methods: AFM13-mediated NK-cell cytotoxicity and IFN-γ production after 4-hour interaction with HL cell lines was measured by 51Cr release assays and flow cytometry, respectively. Expression of NK-cell receptors, NK-cell proliferation (CFSE dilution) and expansion (absolute cell counts) was analyzed by flow cytometry. Results: The interaction of NK-cells with AFM13-coated tumor cells up-regulated the expression of NK-cell receptors such as CD25, CD69, CD137/4-1BB as well as molecules that may serve as NK-cell check-points when compared with the unrelated NK-cell binding TandAb AFM12 that does not bind to target cells. Importantly, CD16A engagement by AFM13 enhanced the proliferation and expansion potential of NK-cells when subsequently incubated with IL-15 or with particularly low doses of IL-2. NK-cell cytotoxicity and IFN-γ production was substantially increased towards CD30+ tumor cells in the presence of AFM13. Even target cells resistant to naïve and IL-2/IL-15-activated NK-cells were susceptible to AFM13-induced NK-cell cytotoxicity. AFM13 concentrations of as low as 10-2 µg/mL resulted in maximal activity while AFM13 was significantly more potent than native anti-CD30 IgG1 antibody. NK-cell activation by IL-2 or IL-15 had a synergistic effect on AFM13-mediated cytotoxicity. Conclusion: AFM13 specifically enhances the cytotoxic, proliferative and cytokine-producing potential of NK-cells. Our data indicate that the distinctive modulation of NK-cell receptors can be utilized to monitor NK-cell responses during AFM13 therapy and provides candidates for therapeutic combination strategies. Moreover, the combination with low doses of IL-2 or with IL-15 may expand the quantity of tumor-reactive NK-cells after AFM13 treatment and promote NK-cell functionality in the tumor microenvironment in cancer patients. Disclosures Reusch: Affimed: Employment, Patents & Royalties: Patents. Gantke:Affimed GmbH: Employment. Kerber:Affimed: Employment. Koch:Affimed: Employment. Treder:Affimed: Employment. Cerwenka:Affimed: Research Funding.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 8087-8087 ◽  
Author(s):  
Balaji Balasa ◽  
Rui Yun ◽  
Nicole Belmar ◽  
Gary Starling ◽  
Audie Rice

8087 Background: Elo is a monoclonal IgG1 antibody targeting CS1, a cell surface glycoprotein highly expressed on >95% of myeloma cells. In preclinical models Elo exerts anti-myeloma activity via NK cell-mediated antibody-dependent cellular cytotoxicity. Len is an immunomodulatory agent that may activate NK cells. The combination of Elo + Len synergistically enhanced anti-tumor activity in myeloma xenograft models. We investigated the mechanism of enhancing NK cell activation and myeloma cell killing with Elo + Len. Methods: Human PBMC/OPM-2 co-cultures were treated for 24-72h with Elo, Len, or Elo + Len. Activation markers and adhesion receptors were evaluated by flow cytometry. Cytokines were measured by Luminex and ELISpot assays. Cytotoxicity was assessed by cell counting. Results: Elo + Len increased IFN-γ secretion significantly more than Elo or Len alone. IFN-γ elevates ICAM-1 expression, and ICAM-1 surface expression on OPM-2 target cells increased synergistically with Elo + Len. Elo, Elo + Len but not Len increased expression of CD25 (IL-2Rα) on NK cells. Len increased the levels of IL-2, but those were decreased in the presence of Elo due to increased consumption by CD25 expressing NK cells. Blocking uptake of IL-2 with anti-CD25 resulted in higher IL-2 levels than with Len. ELISpot assays confirmed that Elo + Len significantly increased the number of IL-2-producing cell colonies compared with Elo or Len. Elo induced NK dependent myeloma cell killing, and the effect was significantly higher with Elo + Len. Conclusions: Elo alone activated NK cells and mediated the killing of myeloma cells in PBMC/OPM-2 co-cultures. Elo + Len synergistically enhanced myeloma cell killing and increased expression/production of IFN-γ, ICAM-1, IL-2, and CD25. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document