scholarly journals Genetic diversity of Trypanosoma cruzi parasites infecting dogs in southern Louisiana sheds light on parasite transmission cycles and serological diagnostic performance

2020 ◽  
Vol 14 (12) ◽  
pp. e0008932
Author(s):  
Eric Dumonteil ◽  
Ardem Elmayan ◽  
Alicia Majeau ◽  
Weihong Tu ◽  
Brandy Duhon ◽  
...  

Background Chagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance. Methodology/principal findings We used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs. Conclusions/significance These observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests.

2021 ◽  
Author(s):  
Kirsten E. Wiens ◽  
Pinyi Nyimol Mawien ◽  
John Rumunu ◽  
Damien Slater ◽  
Forrest K. Jones ◽  
...  

AbstractBackgroundRelatively few COVID-19 cases and deaths have been reported through much of sub-Saharan Africa, including South Sudan, although the extent of SARS-CoV-2 spread remains unclear due to weak surveillance systems and few population-representative serosurveys.MethodsWe conducted a representative household-based cross-sectional serosurvey in Juba, South Sudan. We quantified IgG antibody responses to SARS-CoV-2 spike protein receptor-binding domain and estimated seroprevalence using a Bayesian regression model accounting for test performance.ResultsWe recruited 2,214 participants from August 10 to September 11, 2020 and 22.3% had anti-SARS-CoV-2 IgG titers above levels in pre-pandemic samples. After accounting for waning antibody levels, age, and sex, we estimated that 38.5% (32.1 - 46.8) of the population had been infected with SARS-CoV-2. For each RT-PCR confirmed COVID-19 case, 104 (87-126) infections were unreported. Background antibody reactivity was higher in pre-pandemic samples from Juba compared to Boston, where the serological test was validated. The estimated proportion of the population infected ranged from 30.1% to 60.6% depending on assumptions about test performance and prevalence of clinically severe infections.ConclusionsSARS-CoV-2 has spread extensively within Juba. Validation of serological tests in sub-Saharan African populations is critical to improve our ability to use serosurveillance to understand and mitigate transmission.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Eric Dumonteil ◽  
Hans Desale ◽  
Weihong Tu ◽  
Brandy Duhon ◽  
Wendy Wolfson ◽  
...  

AbstractTrypanosoma cruzi is a zoonotic parasite endemic in the southern US and the Americas, which may frequently infect dogs, but limited information is available about infections in cats. We surveyed a convenience sample of 284 shelter cats from Southern Louisiana to evaluate T. cruzi infection using serological and PCR tests. Parasites from PCR positive cats were also genotyped by PCR and deep sequencing to assess their genetic diversity. We detected a seropositivity rate for T. cruzi of at least 7.3% (17/234), and 24.6% of cats (70/284) were PCR positive for the parasite. Seropositivity increased with cat age (R2 = 0.91, P = 0.011), corresponding to an incidence of 7.2% ± 1.3 per year, while PCR positivity decreased with age (R2 = 0.93, P = 0.007). Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs, in agreement with the circulation of these parasite DTUs in local transmission cycles. These results indicate that veterinarians should have a greater awareness of T. cruzi infection in pets and that it would be important to better evaluate the risk for spillover infections in humans.


2017 ◽  
Vol 55 (5) ◽  
pp. 1396-1407 ◽  
Author(s):  
Alba Abras ◽  
Carmen Muñoz ◽  
Cristina Ballart ◽  
Pere Berenguer ◽  
Teresa Llovet ◽  
...  

ABSTRACTThe immigration of Latin American women of childbearing age has spread the congenital transmission of Chagas disease to areas of nonendemicity, and the disease is now a worldwide problem. Some European health authorities have implemented screening programs to prevent vertical transmission, but the lack of a uniform protocol calls for the urgent establishment of a new strategy common to all laboratories. Our aims were to (i) analyze the trend of passive IgG antibodies in the newborn by means of five serological tests for the diagnosis and follow-up of congenitalTrypanosoma cruziinfection, (ii) assess the utility of these techniques for diagnosing a congenital transmission, and (iii) propose a strategy for a prompt, efficient, and cost-effective diagnosis ofT. cruziinfection. In noninfected newborns, a continuous decreasing trend of passive IgG antibodies was observed, but none of the serological assays seroreverted in any the infants before 12 months. From 12 months onwards, serological tests achieved negative results in all the samples analyzed, with the exception of the highly sensitive chemiluminescent microparticle immunoassay (CMIA). In contrast, in congenitally infected infants, the antibody decline was detected only after treatment initiation. In order to improve the diagnosis of congenitalT. cruziinfection, we propose a new strategy involving fewer tests that allows significant cost savings. The protocol could start 1 month after birth with a parasitological test and/or a PCR. If negative, a serological test would be carried out at 9 months, which if positive, would be followed by another at around 12 months for confirmation.


Author(s):  
Carine Truyens ◽  
Eric Dumonteil ◽  
Jackeline Alger ◽  
Maria Luisa Cafferata ◽  
Alvaro Ciganda ◽  
...  

Chagas disease is a neglected disease caused by Trypanosoma cruzi parasites. Most of diagnosis is based on serological tests but the lack of a gold standard test complicates the measurement of test performance. To overcome this limitation, we used samples from a cohort of well-characterized T. cruzi infected women to evaluate the reactivity of two rapid diagnostic tests and one ELISA assay. Our cohort derived from a previous study on congenital transmission of T. cruzi , and consisted in 481 blood/plasma samples from Argentina (n=149), Honduras (n=228) and Mexico (n=104) with at least one positive T. cruzi PCR. Reactivity of the three tests ranged from 70.5% for the Wiener ELISA to 81.0% for the T-Detect and 90.4% for the Stat-Pak rapid tests. Test reactivity varied significantly among countries, and was highest in Argentina, and lowest in Mexico. When considering at least two reactive serological tests to confirm seropositivity, over 12% of T. cruzi infection cases from Argentina were missed by serological tests, over 21% in Honduras, and an alarming 72% in Mexico. Differences in test performance among countries were not due to differences in parasitemia, but differences in antibody levels against ELISA test antigens were observed. Geographic differences in T. cruzi parasite strains as well as genetic differences among human populations may both contribute to the discrepancies in serological testing. Improvements in serological diagnostics for T. cruzi infections are critically needed to ensure an optimum identification of cases.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Joel Israel Moo-Millan ◽  
Audrey Arnal ◽  
Silvia Pérez-Carrillo ◽  
Anette Hernandez-Andrade ◽  
María-Jesús Ramírez-Sierra ◽  
...  

Abstract Background In the Yucatán Peninsula, Mexico, Triatoma dimidiata is the main vector of Trypanosoma cruzi, the causative agent of Chagas disease. Little effort has been made to identify blood meal sources of T. dimidiata in natural conditions in this region, although this provides key information to disentangle T. cruzi transmission cycles and dynamics and guide the development of more effective control strategies. We identified the blood meals of a large sample of T. dimidiata bugs collected in different ecotopes simultaneously with the assessment of bug infection with T. cruzi, to disentangle the dynamics of T. cruzi transmission in the region. Methods A sample of 248 T. dimidiata bugs collected in three rural villages and in the sylvatic habitat surrounding these villages was used. DNA from each bug midgut was extracted and bug infection with T. cruzi was assessed by PCR. For blood meal identification, we used a molecular assay based on cloning and sequencing following PCR amplification with vertebrate universal primers, and allowing the detection of multiple blood meals in a single bug. Results Overall, 28.7% of the bugs were infected with T. cruzi, with no statistical difference between bugs from the villages or from sylvatic ecotopes. Sixteen vertebrate species including domestic, synanthropic and sylvatic animals, were identified as blood meal sources for T. dimidiata. Human, dog and cow were the three main species identified, in bugs collected in the villages as well as in sylvatic ecotopes. Importantly, dog was highlighted as the main blood meal source after human. Dog was also the most frequently identified animal together with human within single bugs, and tended to be associated with the infection of the bugs. Conclusions Dog, human and cow were identified as the main mammals involved in the connection of sylvatic and domestic transmission cycles in the Yucatán Peninsula, Mexico. Dog appeared as the most important animal in the transmission pathway of T. cruzi to humans, but other domestic and synanthropic animals, which most were previously reported as important hosts of T. cruzi in the region, were evidenced and should be taken into account as part of integrated control strategies aimed at disrupting parasite transmission.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0245655
Author(s):  
Lyanne McCallan ◽  
Cathy Brooks ◽  
Claire Barry ◽  
Catherine Couzens ◽  
Fiona J. Young ◽  
...  

The ability to accurately identify infected hosts is the cornerstone of effective disease control and eradication programs. In the case of bovine tuberculosis, accurately identifying infected individual animals has been challenging as all available tests exhibit limited discriminatory ability. Here we assess the utility of two serological tests (IDEXX Mycobacterium bovis Ab test and Enfer multiplex antibody assay) and assess their performance relative to skin test (Single Intradermal Comparative Cervical Tuberculin; SICCT), gamma-interferon (IFNγ) and post-mortem results in a Northern Ireland setting. Furthermore, we describe a case-study where one test was used in conjunction with statutory testing. Serological tests using samples taken prior to SICCT disclosed low proportions of animals as test positive (mean 3% positive), despite the cohort having high proportions with positive SICCT test under standard interpretation (121/921; 13%) or IFNγ (365/922; 40%) results. Furthermore, for animals with a post-mortem record (n = 286), there was a high proportion with TB visible lesions (27%) or with laboratory confirmed infection (25%). As a result, apparent sensitivities within this cohort was very low (≤15%), however the tests succeeded in achieving very high specificities (96–100%). During the case-study, 7/670 (1.04%) samples from SICCT negative animals from a large chronically infected herd were serology positive, with a further 17 animals being borderline positive (17/670; 2.54%). Nine of the borderline animals were voluntarily removed, none of which were found to be infected post-mortem (no lesions/bacteriology negative). One serology test negative animal was subsequently found to have lesions at slaughter with M. bovis confirmed in the laboratory.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Jobin Thomas ◽  
Ana Balseiro ◽  
Christian Gortázar ◽  
María A. Risalde

AbstractAnimal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB control is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnostic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available studies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic techniques adequate to a broad range of target species and consistent over space and time to allow proper disease monitoring.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jairo Alfonso Mendoza-Roldan ◽  
Giovanni Benelli ◽  
Marcos Antonio Bezerra-Santos ◽  
Viet-Linh Nguyen ◽  
Giuseppe Conte ◽  
...  

Abstract Background Canine vector-borne diseases (CVBDs) associated to ticks are among the most important health issues affecting dogs. In Italy, Ehrlichia canis, Anaplasma spp., Rickettsia conorii and Borrelia burgdorferi (s.l.) have been studied in both healthy canine populations and those clinically ill with suspected CVBDs. However, little information is currently available on the overall prevalence and distribution of these pathogens in the country. The aim of this study was to assess the prevalence and distribution of tick-borne pathogens (TBPs) in clinically suspect dogs from three Italian macro areas during a 15-year period (2006–2020). Methods A large dataset (n = 21,992) of serological test results for selected TBPs in three macro areas in Italy was analysed using a Chi-square test to evaluate the associations between the categorical factors (i.e. macro area, region, year, sex and age) and a standard logistic regression model (significance set at P = 0.05). Serological data were presented as annual and cumulative prevalence, and distribution maps of cumulative positive cases for TBPs were generated. Results Of the tested serum samples, 86.9% originated from northern (43.9%) and central (43%) Italy. The majority of the tests was requested for the diagnosis of E. canis (47%; n = 10,334), followed by Rickettsia spp. (35.1%; n = 7725), B. burgdorferi (s.l.) (11.6%; n = 2560) and Anaplasma spp. (6.2%; n = 1373). The highest serological exposure was recorded for B. burgdorferi (s.l.) (83.5%), followed by Rickettsia spp. (64.9%), Anaplasma spp. (39.8%) and E. canis (28.7%). The highest number of cumulative cases of Borrelia burgdorferi (s.l.) was recorded in samples from Tuscany, central Italy. Rickettsia spp. was more prevalent in the south and on the islands, particularly in dogs on Sicily older than 6 years, whereas Anaplasma spp. was more prevalent in the north and E. canis more prevalent in the south and on the islands. Conclusions The results of this study highlight the high seroprevalence and wide distribution of the four TBPs in dogs with clinically suspected CVBDs from the studied regions of Italy. The very high seroprevalence of B. burgdorferi (s.l.) exemplifies a limitation of this study, given the use of clinically suspect dogs and the possibility of cross-reactions when using serological tests. The present research provides updated and illustrative information on the seroprevalence and distribution of four key TBPs, and advocates for integrative control strategies for their prevention. Grapic abstract


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Sofía Ocaña-Mayorga ◽  
Juan José Bustillos ◽  
Anita G. Villacís ◽  
C. Miguel Pinto ◽  
Simone Frédérique Brenière ◽  
...  

Understanding the blood meal patterns of insects that are vectors of diseases is fundamental in unveiling transmission dynamics and developing strategies to impede or decrease human–vector contact. Chagas disease has a complex transmission cycle that implies interactions between vectors, parasites and vertebrate hosts. In Ecuador, limited data on human infection are available; however, the presence of active transmission in endemic areas has been demonstrated. The aim of this study was to determine the diversity of hosts that serve as sources of blood for triatomines in domestic, peridomestic and sylvatic transmission cycles, in two endemic areas of Ecuador (central coastal and southern highland regions). Using conserved primers and DNA extracted from 507 intestinal content samples from five species of triatomines (60 Panstrongylus chinai, 17 Panstrongylus howardi, 1 Panstrongylus rufotuberculatus, 427 Rhodnius ecuadoriensis and 2 Triatoma carrioni) collected from 2006 to 2013, we amplified fragments of the cytb mitochondrial gene. After sequencing, blood meal sources were identified in 416 individuals (146 from central coastal and 270 from southern highland regions), achieving ≥ 95% identity with GenBank sequences (NCBI-BLAST tool). The results showed that humans are the main source of food for triatomines, indicating that human–vector contact is more frequent than previously thought. Although other groups of mammals, such as rodents, are also an available source of blood, birds (particularly chickens) might have a predominant role in the maintenance of triatomines in these areas. However, the diversity of sources of blood found might indicate a preference driven by triatomine species. Moreover, the presence of more than one source of blood in triatomines collected in the same place indicated that dispersal of vectors occurs regardless the availability of food. Dispersal capacity of triatomines needs to be evaluated to propose an effective strategy that limits human–vector contact and, in consequence, to decrease the risk of T. cruzi transmission.


Sign in / Sign up

Export Citation Format

Share Document