scholarly journals Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells

2021 ◽  
Vol 17 (8) ◽  
pp. e1009783
Author(s):  
Nicholas Van Sciver ◽  
Makoto Ohashi ◽  
Nicholas P. Pauly ◽  
Jillian A. Bristol ◽  
Scott E. Nelson ◽  
...  

The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.

2005 ◽  
Vol 79 (24) ◽  
pp. 15430-15442 ◽  
Author(s):  
Dirk M. Pegtel ◽  
Aravind Subramanian ◽  
Tzung-Shiahn Sheen ◽  
Ching-Hwa Tsai ◽  
Todd R. Golub ◽  
...  

ABSTRACT Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGα6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGα6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGα6 protein levels are increased in the migrating cells. Blocking antibodies against ITGα6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGα6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Mark R. Eichelberg ◽  
Rene Welch ◽  
J. Tod Guidry ◽  
Ahmed Ali ◽  
Makoto Ohashi ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a human herpesvirus that is associated with lymphomas as well as nasopharyngeal and gastric carcinomas. Although carcinomas account for almost 90% of EBV-associated cancers, progress in examining EBV’s role in their pathogenesis has been limited by difficulty in establishing latent infection in nontransformed epithelial cells. Recently, EBV infection of human telomerase reverse transcriptase (hTERT)-immortalized normal oral keratinocytes (NOKs) has emerged as a model that recapitulates aspects of EBV infection in vivo, such as differentiation-associated viral replication. Using uninfected NOKs and NOKs infected with the Akata strain of EBV (NOKs-Akata), we examined changes in gene expression due to EBV infection and differentiation. Latent EBV infection produced very few significant gene expression changes in undifferentiated NOKs but significantly reduced the extent of differentiation-induced gene expression changes. Gene set enrichment analysis revealed that differentiation-induced downregulation of the cell cycle and metabolism pathways was markedly attenuated in NOKs-Akata relative to that in uninfected NOKs. We also observed that pathways induced by differentiation were less upregulated in NOKs-Akata. We observed decreased differentiation markers and increased suprabasal MCM7 expression in NOKs-Akata versus NOKs when both were grown in raft cultures, consistent with our transcriptome sequencing (RNA-seq) results. These effects were also observed in NOKs infected with a replication-defective EBV mutant (AkataΔRZ), implicating mechanisms other than lytic-gene-induced host shutoff. Our results help to define the mechanisms by which EBV infection alters keratinocyte differentiation and provide a basis for understanding the role of EBV in epithelial cancers. IMPORTANCE Latent infection by Epstein-Barr virus (EBV) is an early event in the development of EBV-associated carcinomas. In oral epithelial tissues, EBV establishes a lytic infection of differentiated epithelial cells to facilitate the spread of the virus to new hosts. Because of limitations in existing model systems, the effects of latent EBV infection on undifferentiated and differentiating epithelial cells are poorly understood. Here, we characterize latent infection of an hTERT-immortalized oral epithelial cell line (NOKs). We find that although EBV expresses a latency pattern similar to that seen in EBV-associated carcinomas, infection of undifferentiated NOKs results in differential expression of a small number of host genes. In differentiating NOKs, however, EBV has a more substantial effect, reducing the extent of differentiation and delaying the exit from the cell cycle. This effect may synergize with preexisting cellular abnormalities to prevent exit from the cell cycle, representing a critical step in the development of cancer.


2004 ◽  
Vol 78 (7) ◽  
pp. 3455-3461 ◽  
Author(s):  
Jeffery L. Kutok ◽  
Sherry Klumpp ◽  
Meredith Simon ◽  
John J. MacKey ◽  
Vuong Nguyen ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with epithelial cell and B-cell malignancies. EBV infection of B lymphocytes is essential for acute and persistent EBV infection in humans; however, the role of epithelial cell infection in the normal EBV life cycle remains controversial. The rhesus lymphocryptovirus (LCV) is an EBV-related herpesvirus that naturally infects rhesus macaques and can be used experimentally to model persistent B-cell infection and B-cell lymphomagenesis. We now show that the rhesus LCV can infect epithelial cells in immunosuppressed rhesus macaques and can induce epithelial cell lesions resembling oral hairy leukoplakia in AIDS patients. Electron microscopy, immunohistochemistry, and DNA-RNA in situ hybridization were used to identify the presence of a lytic rhesus LCV infection in these proliferative, hyperkeratotic, or parakeratotic epithelial cell lesions. These studies demonstrate that the rhesus LCV has tropism for epithelial cells, in addition to B cells, and is a relevant animal model system for studying the role of epithelial cell infection in EBV pathogenesis.


2006 ◽  
Vol 80 (19) ◽  
pp. 9444-9454 ◽  
Author(s):  
Austin N. Kirschner ◽  
Jasmina Omerović ◽  
Boris Popov ◽  
Richard Longnecker ◽  
Theodore S. Jardetzky

ABSTRACT Epstein-Barr virus (EBV) is a herpesvirus that infects cells by fusing its lipid envelope with the target cell membrane. The fusion process requires the actions of viral glycoproteins gH, gL, and gB for entry into epithelial cells and additionally requires gp42 for entry into B cells. To further study the roles of these membrane-associated glycoproteins, purified soluble forms of gp42, gH, and gL were expressed that lack the membrane-spanning regions. The soluble gH/gL protein complex binds to soluble gp42 with high affinity, forming a stable heterotrimer with 1:1:1 stoichiometry, and this complex is not formed by an N-terminally truncated variant of gp42. The effects of adding soluble gp42, gH/gL, and gH/gL/gp42 were examined with a virus-free cell-cell fusion assay. The results demonstrate that, in contrast to gp42, membrane fusion does not proceed with secreted gH/gL. The addition of soluble gH/gL does not inhibit or enhance B-cell or epithelial cell fusion when membrane-bound gH/gL, gB, and gp42 are present. However, the soluble gH/gL/gp42 complex does activate membrane fusion with B cells, similarly to soluble gp42, but it does not inhibit fusion with epithelial cells, as observed for gp42 alone. A gp42 peptide, derived from an N-terminal segment involved in gH/gL interactions, binds to soluble gH/gL and inhibits EBV-mediated epithelial cell fusion, mimicking gp42. These observations reveal distinct functional requirements for gH/gL and gp42 complexes in EBV-mediated membrane fusion.


2004 ◽  
Vol 78 (22) ◽  
pp. 12613-12624 ◽  
Author(s):  
Dirk M. Pegtel ◽  
Jaap Middeldorp ◽  
David A. Thorley-Lawson

ABSTRACT Epstein-Barr virus (EBV) is found frequently in certain epithelial pathologies, such as nasopharyngeal carcinoma and oral hairy leukoplakia, indicating that the virus can infect epithelial cells in vivo. Recent studies of cell lines imply that epithelial cells may also play a role in persistent EBV infection in vivo. In this report, we show the establishment and characterization of an ex vivo culture model of tonsil epithelial cells, a likely site for EBV infection in vivo. Primary epithelial-cell cultures, generated from tonsil explants, contained a heterogeneous mixture of cells with an ongoing process of differentiation. Keratin expression profiles were consistent with the presence of cells from both surface and crypt epithelia. A small subset of cells could be latently infected by coculture with EBV-releasing cell lines, but not with cell-free virus. We also detected viral-DNA, -mRNA, and -protein expression in cultures from EBV-positive tonsil donors prior to in vitro infection. We conclude that these cells were either already infected at the time of explantation or soon after through cell-to-cell contact with B cells replicating EBV in the explant. Taken together, these findings suggest that the tonsil epithelium of asymptomatic virus carriers is able to sustain EBV infection in vivo. This provides an explanation for the presence of EBV in naso- and oropharyngeal pathologies and is consistent with epithelial cells playing a role in the egress of EBV during persistent infection.


2005 ◽  
Vol 79 (17) ◽  
pp. 10923-10930 ◽  
Author(s):  
Liguo Wu ◽  
Corina M. Borza ◽  
Lindsey M. Hutt-Fletcher

ABSTRACT The core fusion machinery of all herpesviruses consists of three conserved glycoproteins, gB and gHgL, suggesting a common mechanism for virus cell fusion, but fusion of Epstein-Barr virus (EBV) with B cells and epithelial cells is initiated differently. Fusion with B cells requires a fourth protein, gp42, which complexes with gHgL and interacts with HLA class II, the B-cell coreceptor. Fusion with an epithelial cell does not require gp42 but requires interaction of gHgL with a novel epithelial cell coreceptor. Epithelial cell fusion can be inhibited by gp42 binding to gHgL and by antibodies to gH that fail to block B-cell fusion. This suggests that regions of gHgL initiating fusion with each cell are separable from each other and from regions involved in fusion itself. To address this possibility we mapped the region of gH recognized by a monoclonal antibody to gH that blocks EBV fusion with epithelial cells but not B cells by making a series of chimeras with the gH homolog of rhesus lymphocryptovirus. Proteins with mutations engineered within this region included those that preferentially mediate fusion with B cells, those that preferentially mediate fusion with epithelial cells, and those that mediate fusion with neither cell type. These results support the hypothesis that the core fusion function of gH is the same for B cells and epithelial cells and that it differs only in the way in which it is triggered into a functionally active state.


2001 ◽  
Vol 82 (10) ◽  
pp. 2373-2383 ◽  
Author(s):  
Seiji Maruo ◽  
Lixin Yang ◽  
Kenzo Takada

Epstein–Barr virus (EBV) is associated with various epithelial malignancies such as nasopharyngeal carcinoma and gastric carcinoma, and causes oral hairy leukoplakia, a productive EBV infection of the differentiated epithelium of the tongue. However, it is not clear by what mechanism EBV infects epithelial cells. We generated a recombinant EBV that expresses enhanced green fluorescent protein in order to monitor EBV entrance into epithelial cells quickly and quantitatively. Using this monitoring system, we examined the roles of gp350 and gp25 in EBV infection of epithelial cells by utilizing soluble forms of the gp350 and gp25 proteins. EBV infection of three of four examined epithelial cell lines, 293, NU-GC-3 and Lovo, was almost completely blocked by pretreatment of cells with a soluble form of gp350 (designated gp350Ig), and this blockage was dependent on the CD21-binding region of gp350. On the other hand, infection of the other epithelial cell line, AGS, was not inhibited at all by pretreatment with gp350Ig. Moreover, we found that a soluble form of gp25 (designated gp25Ig) preferentially bound to epithelial cells rather than B cells, and pretreatment of cells with gp25Ig substantially blocked EBV infection of some epithelial cells. These results indicate the existence of two distinct pathways in EBV infection of epithelial cells, a gp350-dependent pathway and a gp350-independent pathway, and that gp25 can play a role in the infection of some epithelial cells.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010045
Author(s):  
Nicholas Van Sciver ◽  
Makoto Ohashi ◽  
Dhananjay M. Nawandar ◽  
Nicholas P. Pauly ◽  
Denis Lee ◽  
...  

Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other’s promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Zp promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


Cancers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 237 ◽  
Author(s):  
Asuka Nanbo ◽  
Harutaka Katano ◽  
Michiyo Kataoka ◽  
Shiho Hoshina ◽  
Tsuyoshi Sekizuka ◽  
...  

Infection of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, is associated with various malignancies in B lymphocytes and epithelial cells. EBV encodes 49 microRNAs in two separated regions, termed the BART and BHRF1 loci. Although accumulating evidence demonstrates that EBV infection regulates the profile of microRNAs in the cells, little is known about the microRNAs in exosomes released from infected cells. Here, we characterized the expression profile of intracellular and exosomal microRNAs in EBV-negative, and two related EBV-infected Burkitt lymphoma cell lines having type I and type III latency by next-generation sequencing. We found that the biogenesis of exosomes is upregulated in type III latently infected cells compared with EBV-negative and type I latently infected cells. We also observed that viral and several specific host microRNAs were predominantly incorporated in the exosomes released from the cells in type III latency. We confirmed that multiple viral microRNAs were transferred to the epithelial cells cocultured with EBV-infected B cells. Our findings indicate that EBV infection, in particular in type III latency, modulates the biogenesis of exosomes and the profile of exosomal microRNAs, potentially contributing to phenotypic changes in cells receiving these exosomes.


Sign in / Sign up

Export Citation Format

Share Document